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Design is Everywhere



Study different design problems and generalize

Approach

Metamaterials Chemistry Cyber-physical Systems



1. How to represent a design?

2. How to represent a design space?

3. How to learn a design space?

4. How to find designs with optimal performance?

5. How to bridge the gap between digital & real?

Key Questions for Computational Design
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Metamaterials Chemistry Cyber-physical Systems

Design Can Be Represented As a Graph



Double Bond

Single Bond

Aromatic Bond

Oxygen Atom Node

Carbon Atom Node

Nitrogen Atom Node

Molecules As Graphs



Geometry As Graphs
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2× 2×

Graph Grammars As Design Spaces



Molecules: Polygrammar

Guo et. al, Advanced Science, 2022



Cyber-physical Systems: Robots, Drones 
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Cyber-physical Systems: Robots, Drones 



Cyber-physical Systems: Robots, Drones 

Zhao  et. al, Siggraph, 2020



Architected Materials



Architected Materials

[Panetta et al. 2015]

15 Nodes, 

Choose 3 edges

Geometry graphs



Architected Materials

Geometry graphs Triangle Meshes or CAD CSG Trees



Architected Materials

Geometry graphs Triangle Meshes or CAD CSG Trees

Discrete 

Approximations
Trigonometric 

Approximations

Static Graph 

Subdivision

Manual CAD 

Specification



Architected Materials

Unified Representation

Makatura  et. al, TOG, 2023
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Architected Materials
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Architected Materials



Representing Known Structures

Makatura  et. al, TOG, 2023



Established Structures

Makatura  et. al, TOG, 2023



Randomly Generated Structures

Makatura  et. al, TOG, 2023



Hundreds of new TPMS structures

Discovery of New TPMS 



1. How to represent a design?

2. How to represent a design space?

3. How to learn a design space?

4. How to find designs with optimal performance?

5. How to bridge the gap between digital & real?

Key Questions for Computational Design



Small Experimental Datasets

• Existing dataset for polyurethanes: Only 20 samples

Isocyanates

[Menon et al. 2019]

× Train/Finetune DL networks



Learning graph grammars from examples

• We use bottom-up search to automatically generate the graph grammar

Progressively collapse edges of all input
graphs till they become single nodes

Guo et. al, ICLR, 2022
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Learning graph grammars from examples

• We use bottom-up search to automatically generate the graph grammar

Guo et. al, ICLR, 2022



Learning graph grammar as inference 

Bottom-up Construction

. . .
. . .

Edge Weight Function

ℱ𝜃(∙)

• max𝜃(𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝐺(ℱ𝜃 𝑒 ) + 𝜆 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝐺(ℱ𝜃 𝑒 ))

REINFORCE

Guo et. al, ICLR, 2022



Trade-off between diversity vs. validity

Guo et. al, ICLR, 2022



Deep learning-based
 methods

Grammar-based 
methods

Method Valid Unique Div. Chamfer RS Memb.

Train data 100% 100% 0.61 0.00 100% 100%

GraphNVP 0.16% --- --- --- 0.00% 0.00%

JT-VAE 100% 5.8% 0.72 0.85 5.50% 66.5%

HierVAE 100% 99.6% 0.83 0.76 1.85% 0.05%

MHG 100% 75.9% 0.88 0.83 2.97% 12.1%

STONED 100% 100% 0.85 0.86 5.63% 79.8%

DEG 100% 100% 0.86 0.87 27.2% 96.3%

Results on Class-specific Polymer Data

Guo et. al, ICLR, 2022



Percentage of molecules 
belonging to the concerned class

Grammar-based 
methods

Method Valid Unique Div. Chamfer RS Memb.

Train data 100% 100% 0.61 0.00 100% 100%

GraphNVP 0.16% --- --- --- 0.00% 0.00%

JT-VAE 100% 5.8% 0.72 0.85 5.50% 66.5%

HierVAE 100% 99.6% 0.83 0.76 1.85% 0.05%

MHG 100% 75.9% 0.88 0.83 2.97% 12.1%

STONED 100% 100% 0.85 0.86 5.63% 79.8%

DEG 100% 100% 0.86 0.87 27.2% 96.3%

Deep learning-based
 methods

Percentage of synthesizable 
molecules

Results on Class-specific Polymer Data

Guo et. al, ICLR, 2022



Only trained on 117 
samples of original 

81k dataset

Deep learning-based 
methods

Grammar-based 
methods

Method

Distribution Statistics (↓) Sample Quality (↑)

logP SA QED MW Valid Uniqu

e

Div. Chamfe

r

Train data 0.12 0.02 0.002 2.98 100% 100% 0.83 0.00

SMILESVAE 9.63 2.99 0.19 751.6 0.01% --- --- ---

GraphNVP 2.94 0.65 0.03 435.6 0.23% --- --- ---

JT-VAE 2.93 0.32 0.10 210.1 100% 83.9% 0.88 0.50

HierVAE 0.50 0.08 0.02 42.45 100% 99.9% 0.82 0.32

MHG 9.20 1.91 0.10 380.3 100% 100% 0.91 0.56

STONED 2.43 0.81 0.07 179.9 99.9% 100% 0.83 0.45

DEG
 (0.15%, fitting)

1.80 0.25 0.02 69.0 100% 100% 0.82 0.60

DEG

 (0.15%)
5.52 0.51 0.20 334.2 100% 100% 0.86 0.62

Results on Large Polymer Dataset

Guo et. al, ICLR, 2022



• Symbolic representations 

• Automatic checkers/oracles

• For example, retrosynthesis

• Expert annotations 

Key Insights

Sun et. al, ICML, 2024
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From Design To Performance
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Design Space Performance Space

• Numerical simulations (or real experiments) map a point in design space to 
a point in performance space



Inverse Design
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Design Space Performance Space

• Inverse problem is much more difficult

?



Case 1: Small Experimental Datasets

• We would like to find a molecule with desired material properties

Isocyanates

• Existing dataset for polyurethanes:

Only 20 samples [Menon et al. 2019]

× Train/Finetune DL networks



Finding new molecules & their properties 

Generative 
Model

. . .

Predictive 
Model

. . .

PerformanceGenerated Samples

Guo et. al, ICML, 2023



Grammar Induces Manifold Geometry

Grammar-induced GeometryGraph Grammar

Guo et. al, ICML, 2023



Property Predictor

Graph Neural Diffusion 0.530.63

[Chamberlain et al. 2021]

0.40 ? 0.630.40

Guo et. al, ICML, 2023



Joint optimization of grammar & predictor

Graph Neural Diffusion 0.530.63

[Chamberlain et al. 2021]

0.40 ? 0.630.40

Molecular grammar learning

Graph neural diffusion

Guo et. al, ICML, 2023



Property Prediction Results
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Guo et. al, ICML, 2023



Design of Novel Molecules



Case 2: Simulation is Possible 



Differentiable Simulation Can Help
Forward pass

𝑚

𝑘

The computational graph
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Differentiable Simulation Can Help
Backward pass

𝑚
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Differentiable Simulation Can Help

• System identification (optimizing 𝜃)

• Initial condition optimization (optimizing 𝑠0)

𝜽

𝒔0 Sim 𝒔1 Sim 𝒔2 Sim 𝒔3



Optimization of Hybrid UAVs



Optimization of Hybrid UAVs



Optimization of Soft Fish

Ma et. al, Siggraph, 2022



Optimization of Fluidic Systems

Ma et. al, Siggraph Asia, 2022



Optimization of Fluidic Systems

Li et. al, NeurIPS, 2024



Optimization of Fluidic Systems

Li et. al, NeurIPS, 2024
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Key Questions for Computational Design



Simulation is Often Unreliable
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𝐹𝑟𝑒𝑎𝑙 𝐹𝑟𝑒𝑎𝑙(𝑥)

𝐹𝑠𝑖𝑚

• Simulation does not match real experiments



Classical Physics-based Simulation

Partial Differential Equations (PDE)

𝑹 ሷ𝒙 − 𝜵 ∙ 𝑷 − 𝑹𝑮 = 0

Simple Material

𝒔0 Sim 𝒔1 Sim 𝒔2 Sim 𝒔3



A Hybrid Neural-PDE Approach

Partial Differential Equations (PDE)

𝑹 ሷ𝒙 − 𝜵 ∙ 𝑷 − 𝑹𝑮 = 0

𝒔0 Sim 𝒔1 Sim 𝒔2 Sim 𝒔3

Neural Networks

Ma et. al, ICML, 2023



Closing the Sim-to-real Gap

Sim Real

𝑳𝒐𝒔𝒔

Backpropagation

Partial Differential Equations (PDE)

𝑹 ሷ𝒙 − 𝜵 ∙ 𝑷 − 𝑹𝑮 = 0

Neural Networks

Fits the real-
world data 
better than 

classic 
models

Ma et. al, ICML, 2023



A Hybrid Neural-PDE Approach

SimulationGround truth

Data efficiency: one-shot generalization over geometries, 
boundary conditions, temporal range, and multi-physics.

SimulationGround truth

Ma et. al, ICML, 2023



Comparison to Data Driven Methods

OursGround truth

Generalization: over 100X times more accurate than end-
to-end ML approaches that do not keep the PDEs, e.g., 

graph neural network (GNN) simulation

GNSTraining data

Ma et. al, ICML, 2023



Strength: the ability to recover from an applied load.

Toughness: the ability to resist cracks.

Strength and Toughness are often mutually exclusive.
Because to be tough, a material has to be ductile 
enough to tolerate long cracks and absorb more energy 
during fracture.

Engineering applications require materials to be simultaneously strong and tough. 

How to design materials that are simultaneously strong and tough? 

Example: tough & strong composites



A full picture: Pareto Front

3D printed by OBJET

Example: tough & strong composites



A full picture: Pareto Front

Example: tough & strong composites

Challenge: simulation-to-reality gap.

Reason: highly nonlinear fracture dynamics.



A competitive game



https://arxiv.org/abs/2302.01078

Sim-to-real gap



1. Simulator becomes more accurate

2. Simulator propose better designs

As the algorithm iterates:

Closed the simulation-to-reality gap

Sim-to-real Gap



Can computers beat humans at design?



Hundreds of new TPMS structures

Representations are Key



Design of Novel Molecules

• We can find new designs with optimal performance trade-offs



Design of Novel Molecules

• We can find new designs with optimal performance trade-offs
• The grand challenge is extrapolation beyond current data.



Will computers and humans produce 
better designs?



• Representations are key

• Scientists need workflows for small experimental datasets

• New workflows will learn/create specialized design spaces

• Workflows need to incorporate knowledge from experts & check validity

• Workflows will couple generative and predictive models to find optimal design

• Predictive models will combine neural/classical models

• We will be able to find new designs with optimal performance trade-offs

• But the real grand challenge is extrapolation beyond current data.

Lessons Learned



Acknowledgements
Allan Zhao, MIT

Beichen Li, MIT

Liane Makatura, MIT

Liang Shi, MIT

Timothy Erps, MIT

Michael Foshey, MIT

Minghao Guo, MIT

Pingchuan Ma, MIT

Yifei Li, MIT

Sebastien Wah, MIT

John Zhang, MIT

Bolei Deng, MIT

Bohan Wang, MIT

Jie Chen, IBM

Payel Das, IBM

Veronika Thost, IBM

Wan Shou, U. Arkansas

Jie Xu, NVIDIA

Andy Spielberg, Harvard

Bo Zhu, Dartmouth

Kui Wu, Tencent

Tao Du, Tsinghua

Tae Hyun Oh, Postech

Bernd Bickel, IST

Chris Wojtan, IST

Yi-Lu Chen, IST

Daniela Rus, MIT

Wei Wang, MIT

Josie Hughes, EPFL

Juan Salazar, MIT

Mina Konakovic Lukovic, MIT

Sangeeta Srinivasan, Wisconsin

Eftychios Sifakis, Wisconsin

Robert Katzschman, ETH

Yu Zhang , ETH

Elvis Nava , ETH

Philip Arm , ETH

Mike Yan Michelis , ETH

Benjamin F. Grewe , ETH



Thank you

Email: 
wojciech@mit.edu


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92

