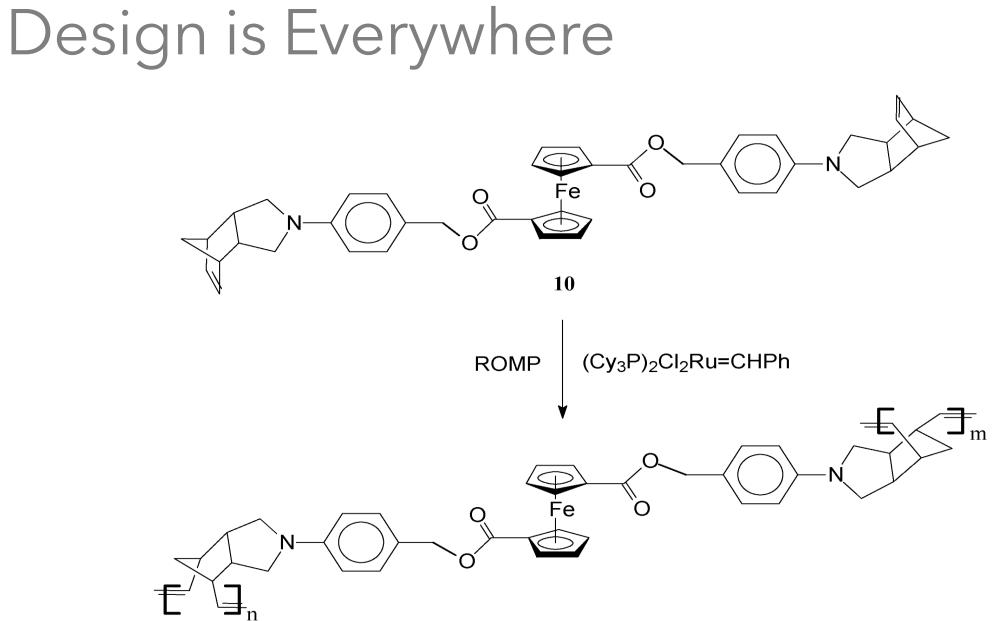
Can Computers Beat Humans at Design?

Wojciech Matusik MIT

Design is Everywhere

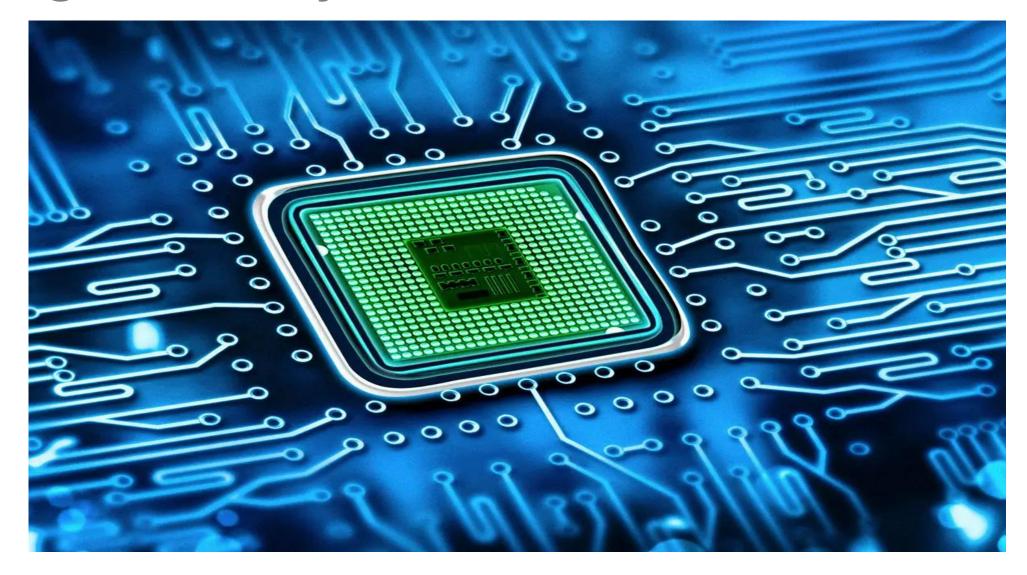


Design is Everywhere

```
Dijkstra's Algorithm Pseudocode in C++
```

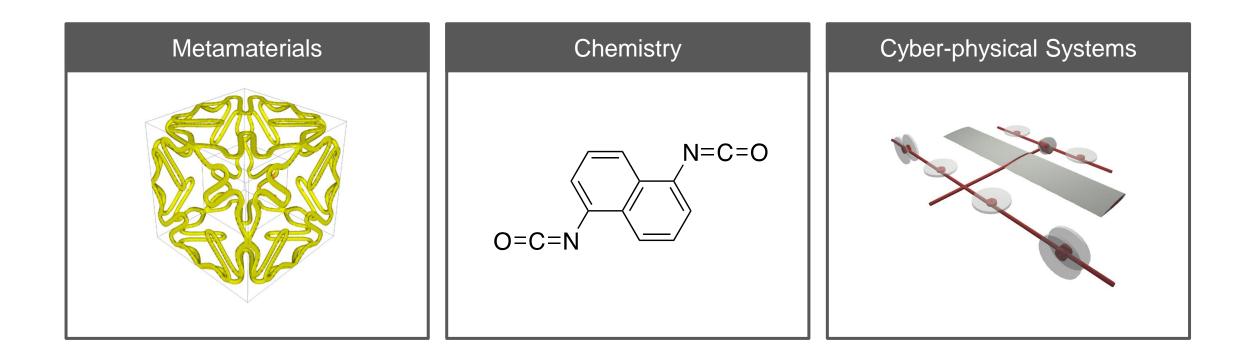
```
function dijkstraalgorithm(G, S)
for each node N in G
    dist[N] <- infinite
    prev[N] <- NULL
    If N != S, add N to Priority Queue Q
dist[S] <- 0
while Q IS NOT EMPTY
    U <- Extract MIN from Q
    for each unmarked neighbour N of U
        temporaryDist <- dist[U] + edgeWeight(U, N)</pre>
        if temporaryDist < dist[N]</pre>
            dist[N] <- temporaryDist
            prev[N] <- U
return dist[], prev[]
```

Design is Everywhere



Printed, functional walker

Study different design problems and generalize



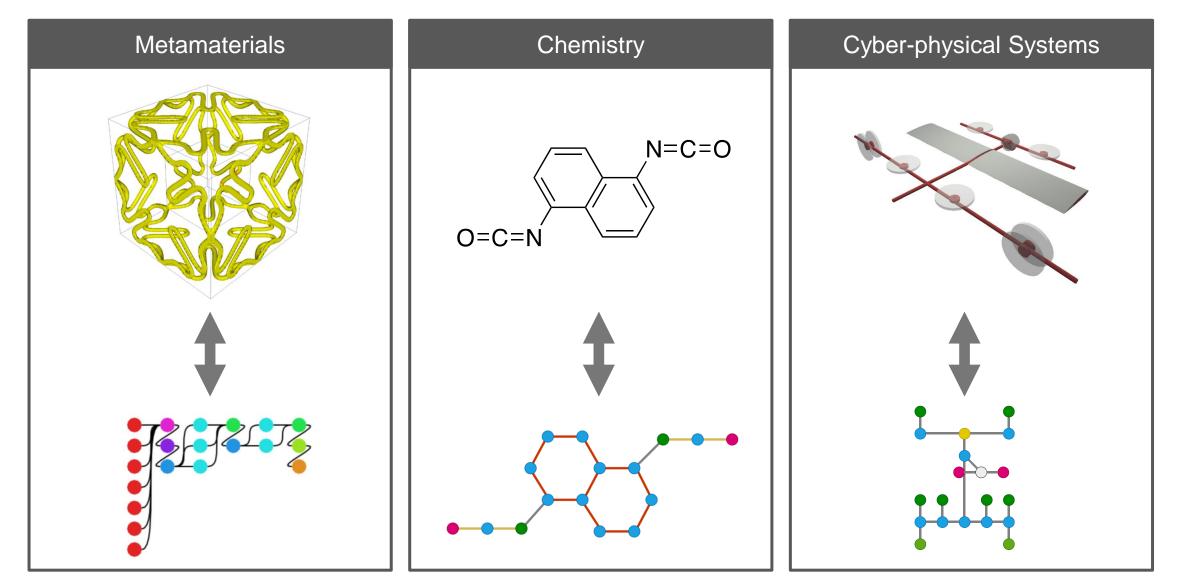
Key Questions for Computational Design

- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

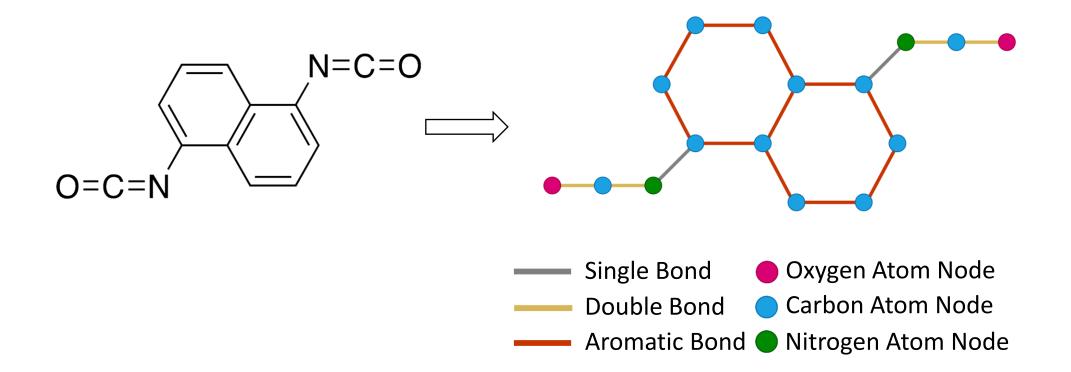
Key Questions for Computational Design

- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

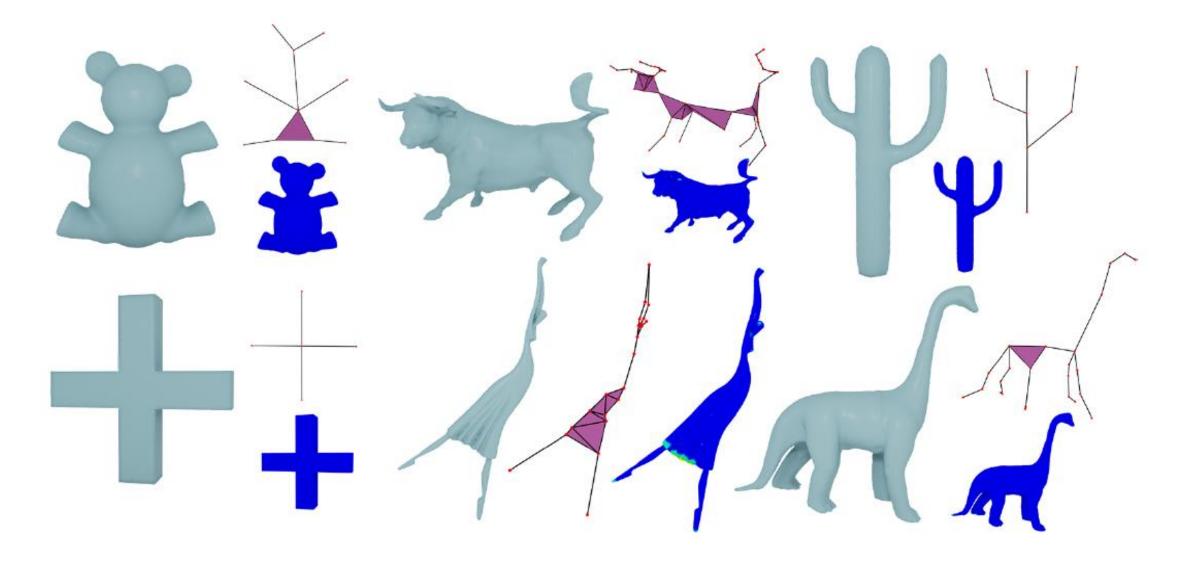
Design Can Be Represented As a Graph



Molecules As Graphs



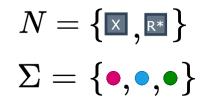
Geometry As Graphs



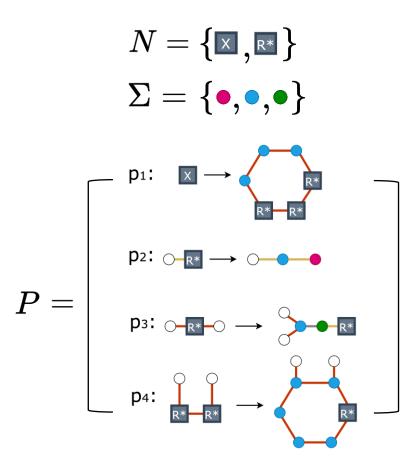
Key Questions for Computational Design

- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

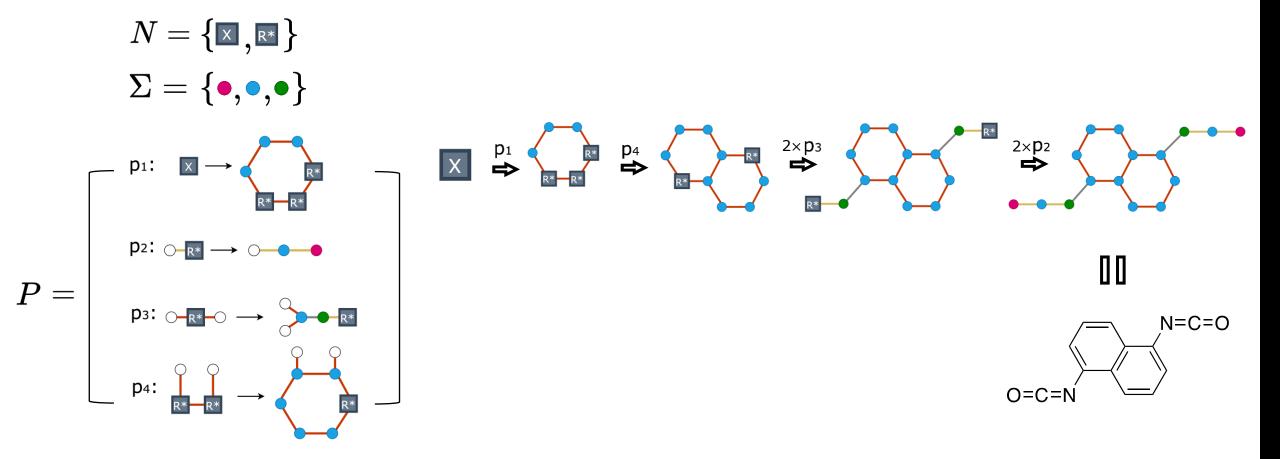
Graph Grammars As Design Spaces



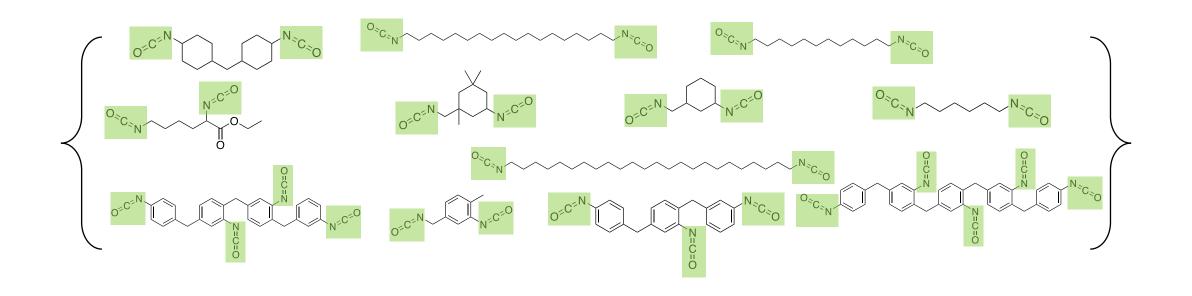
Graph Grammars As Design Spaces



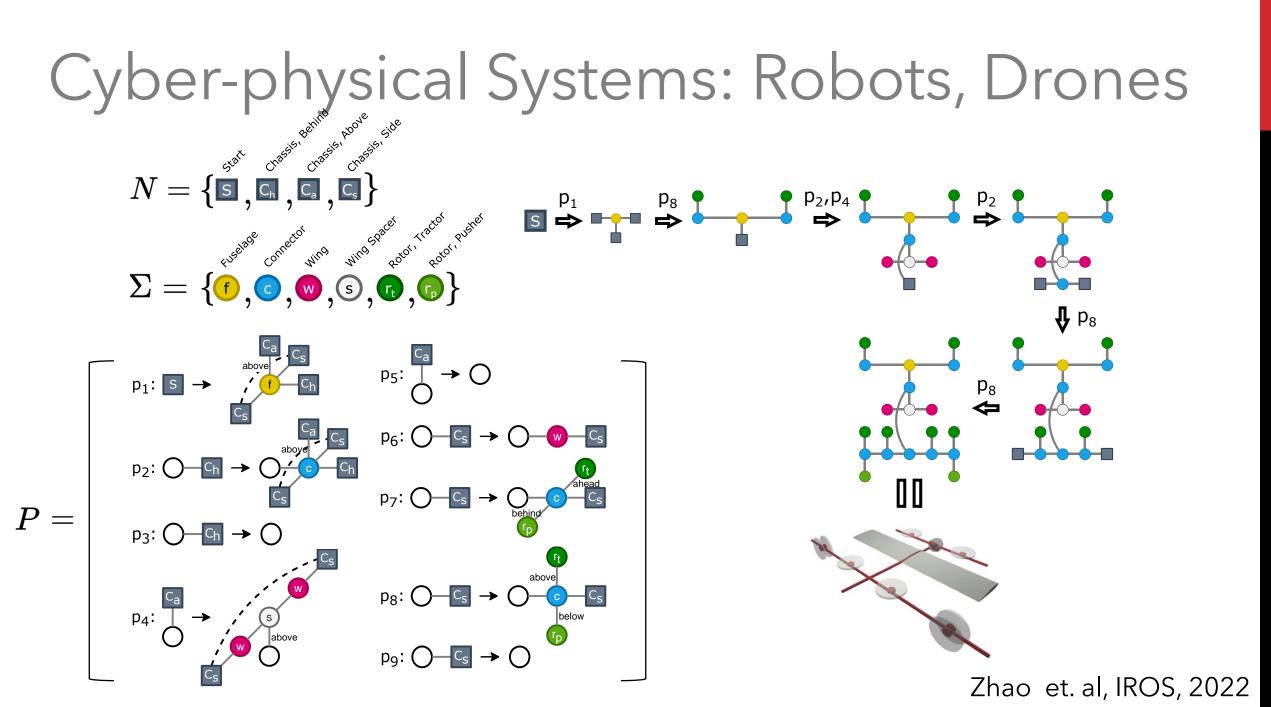
Graph Grammars As Design Spaces



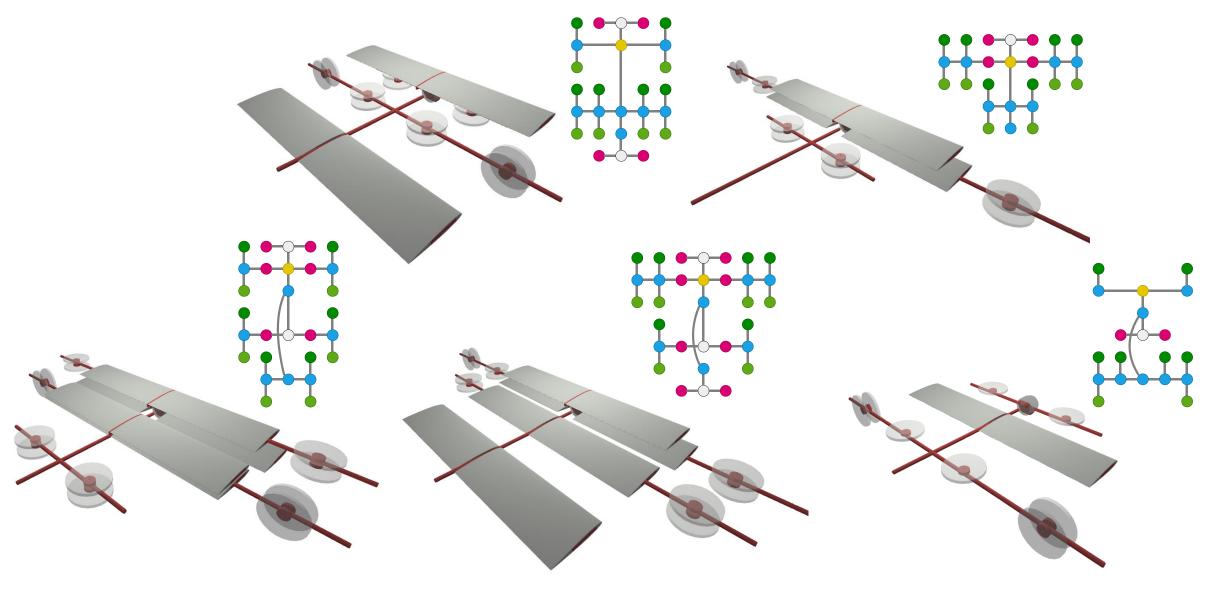
Molecules: Polygrammar



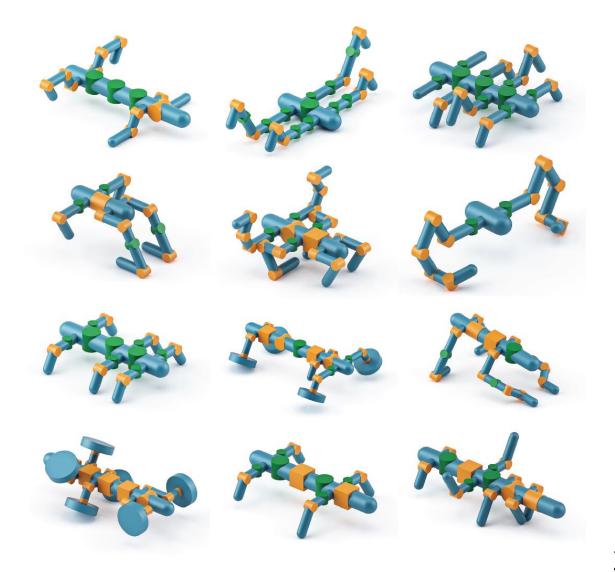
Guo et. al, Advanced Science, 2022



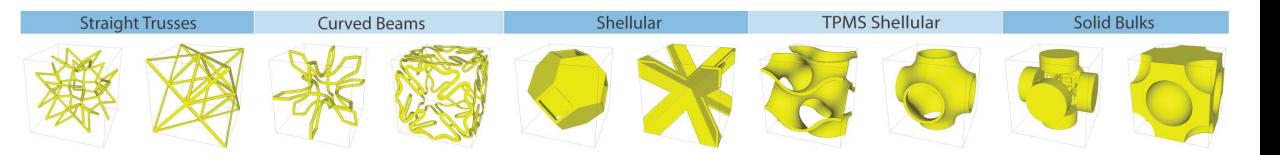
Cyber-physical Systems: Robots, Drones

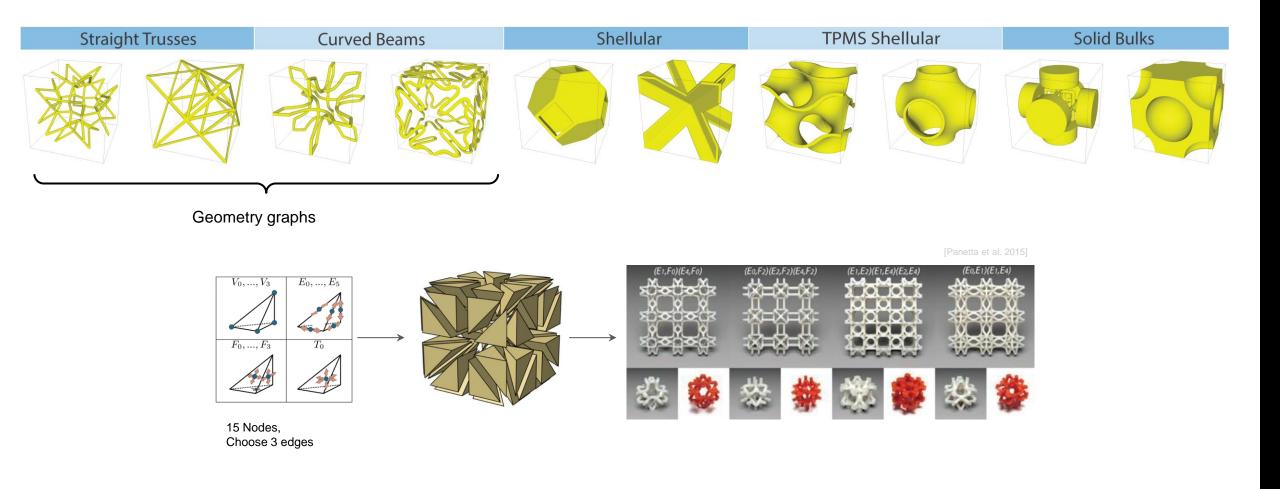


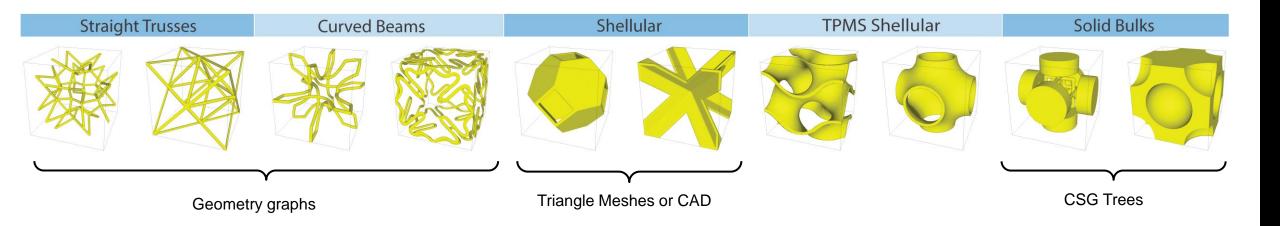
Cyber-physical Systems: Robots, Drones

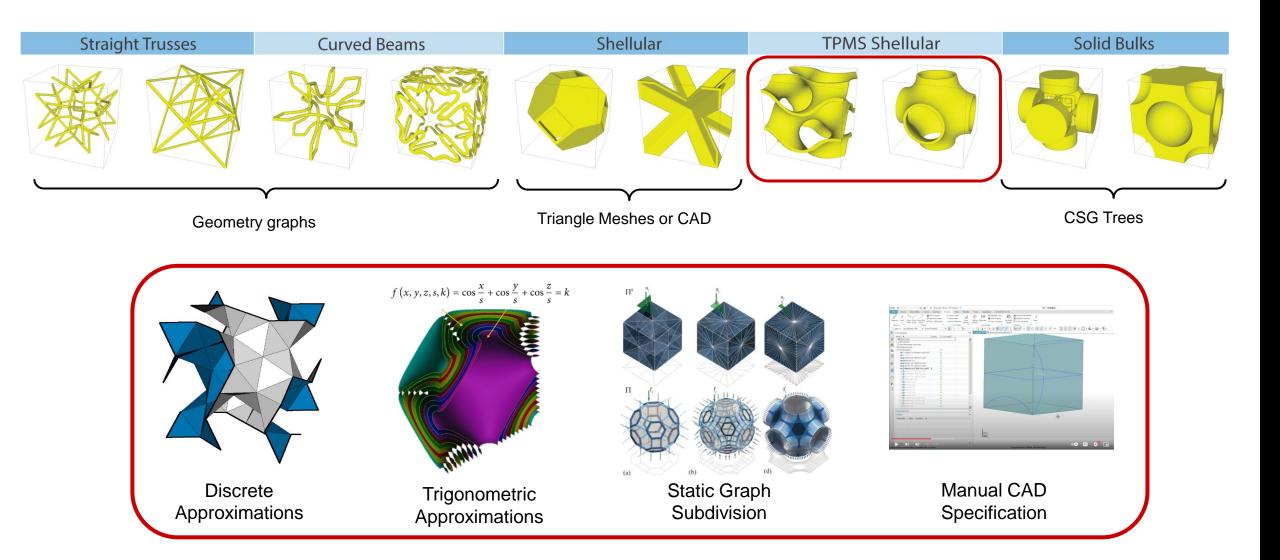


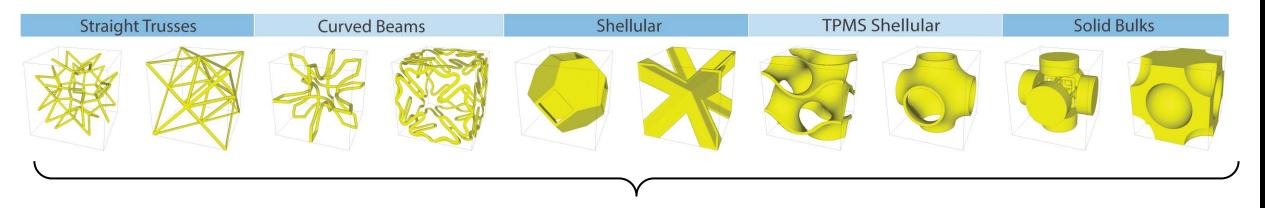
Zhao et. al, Siggraph, 2020



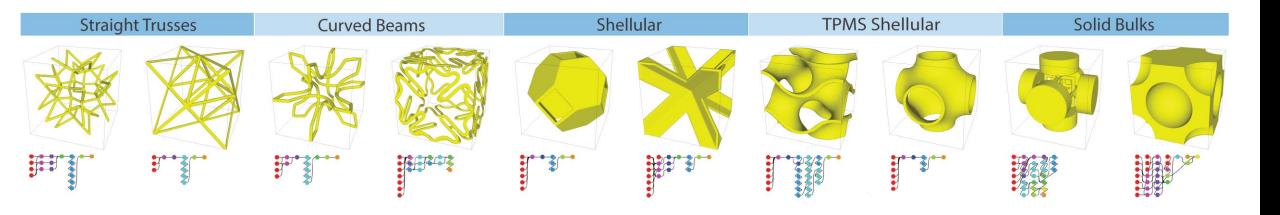


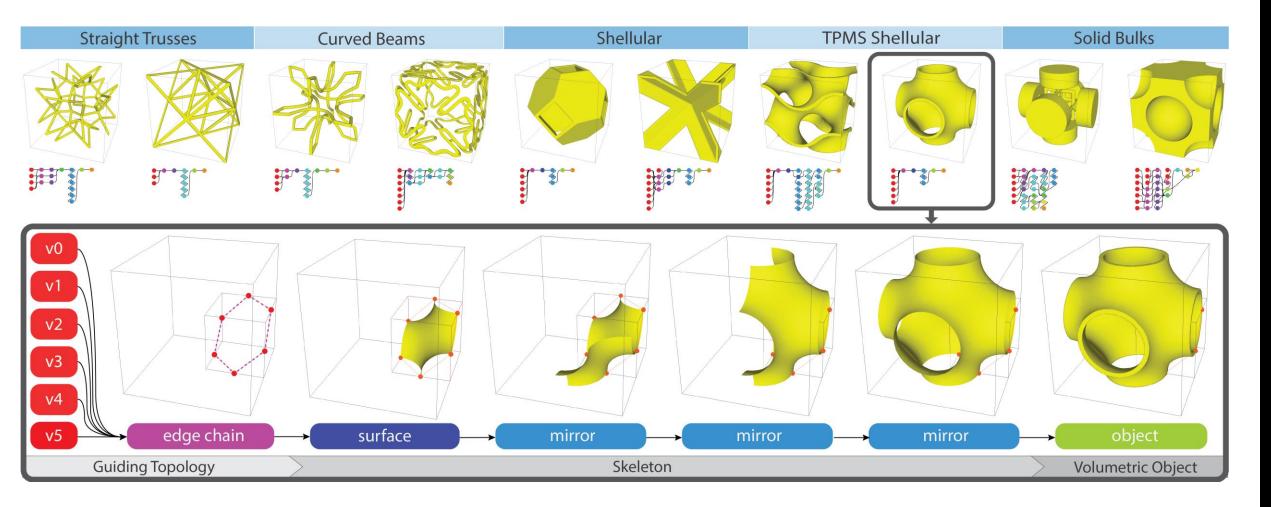


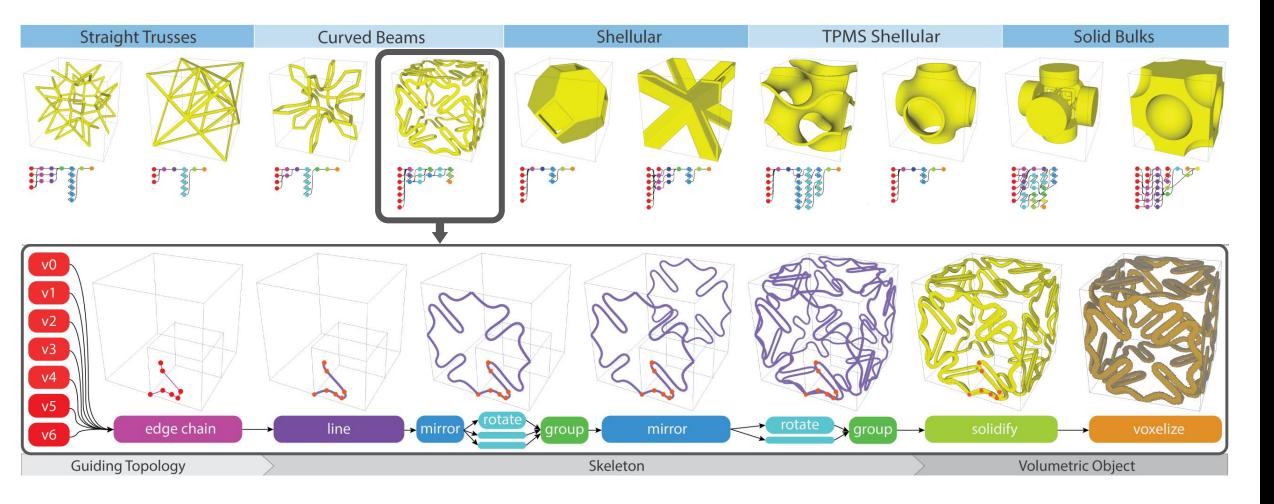


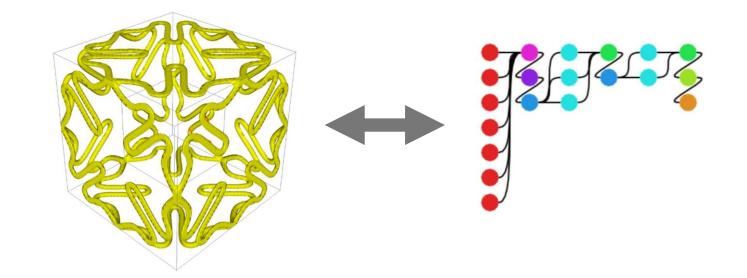


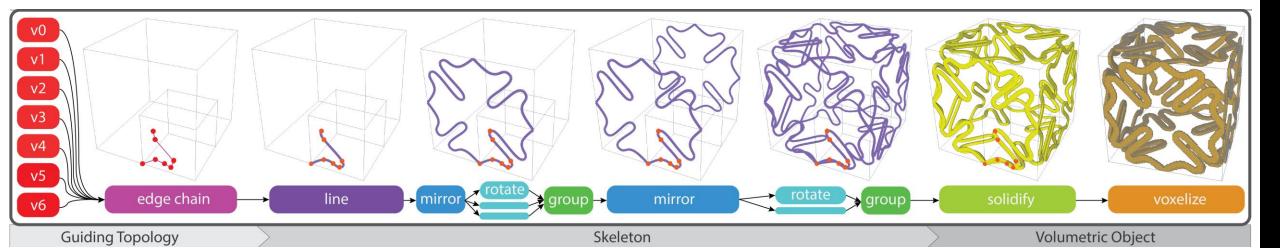
Unified Representation



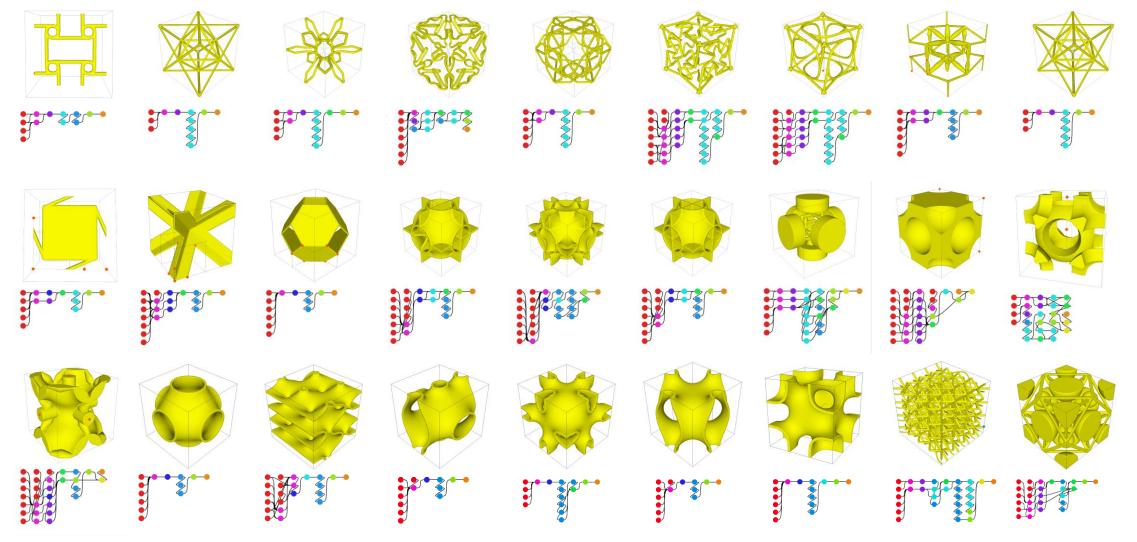




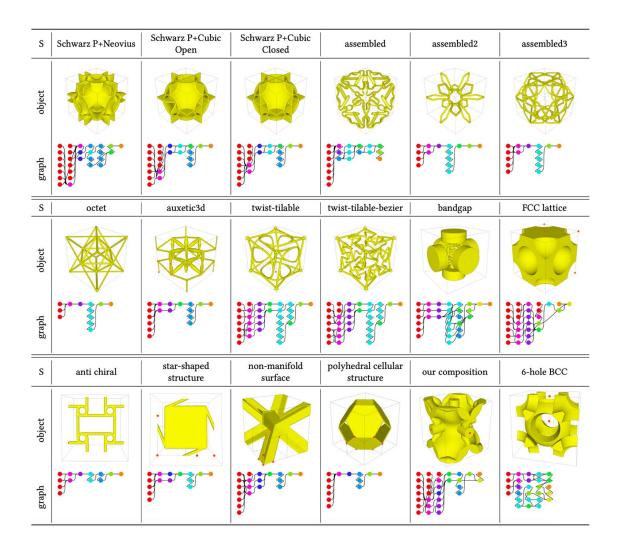


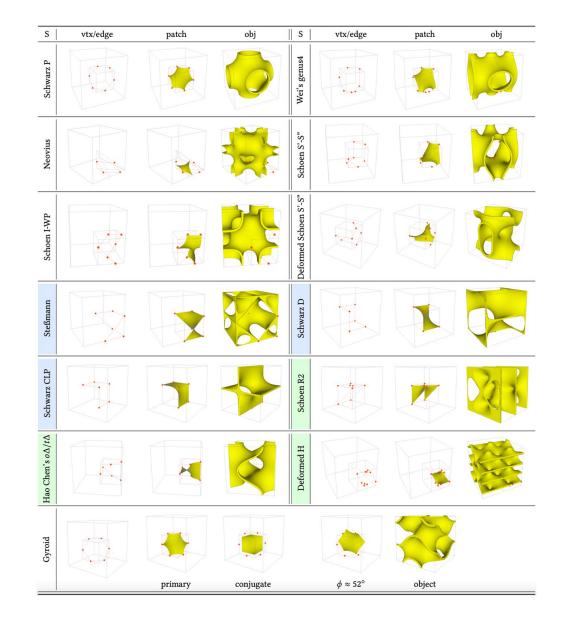


Representing Known Structures

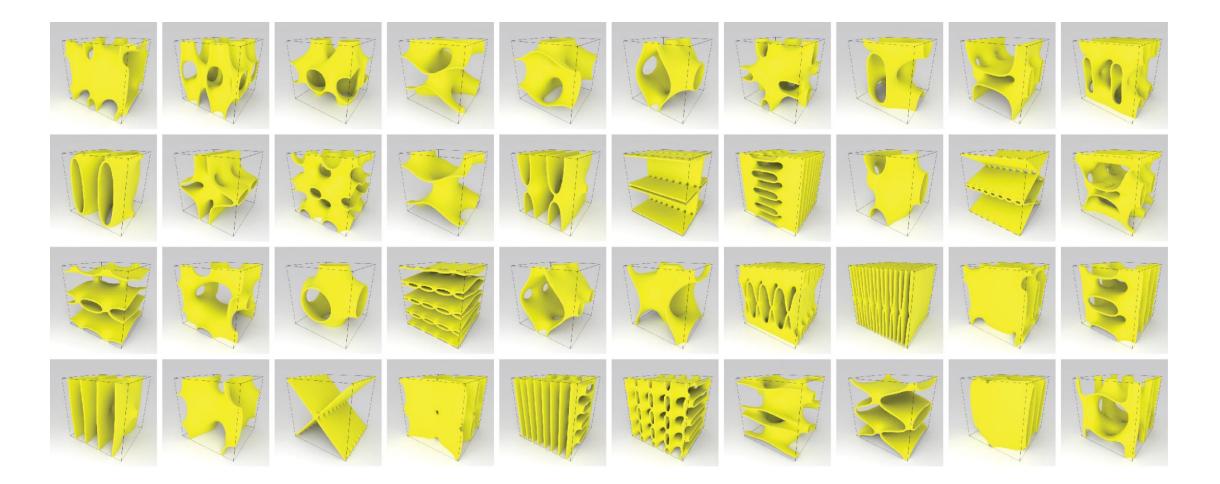


Established Structures

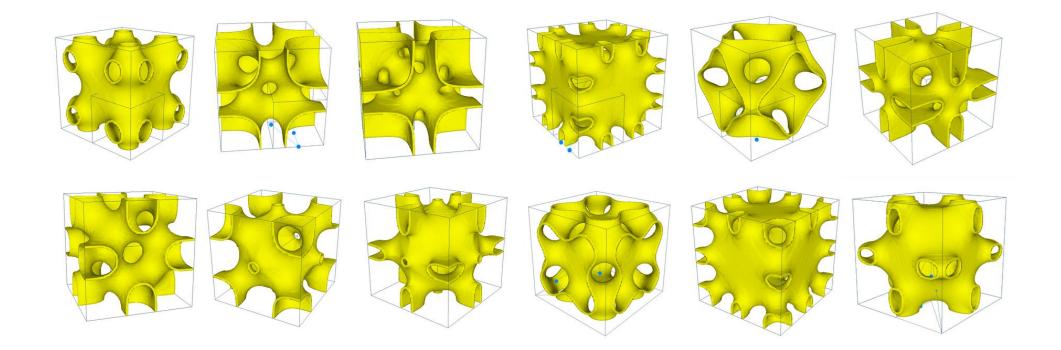




Randomly Generated Structures



Discovery of New TPMS



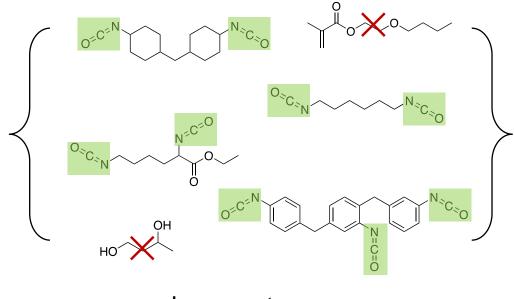
Hundreds of new TPMS structures

Key Questions for Computational Design

- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

Small Experimental Datasets

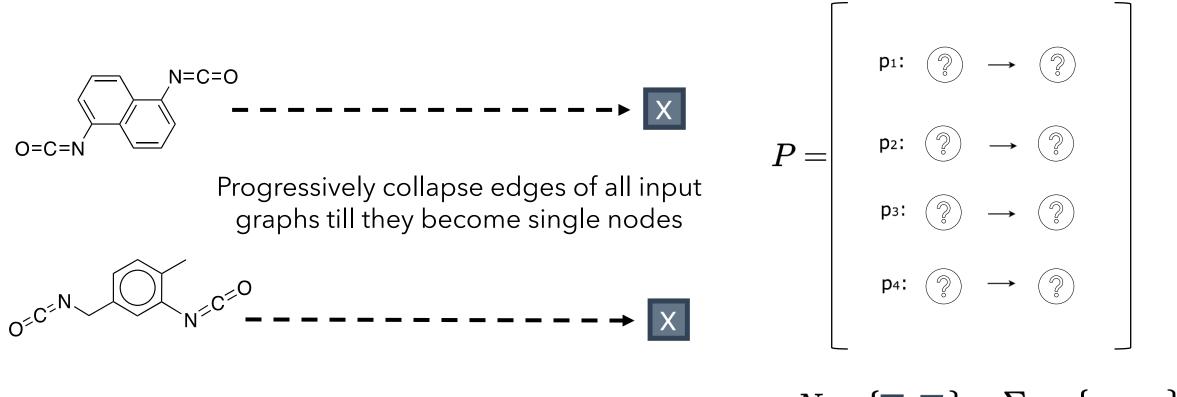
• Existing dataset for polyurethanes: Only 20 samples [Menon et al. 2019]



× Train/Finetune DL networks

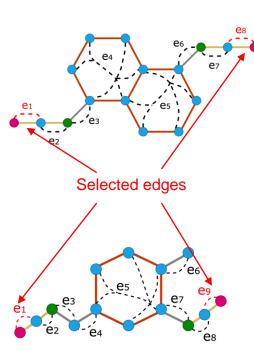
Isocyanates

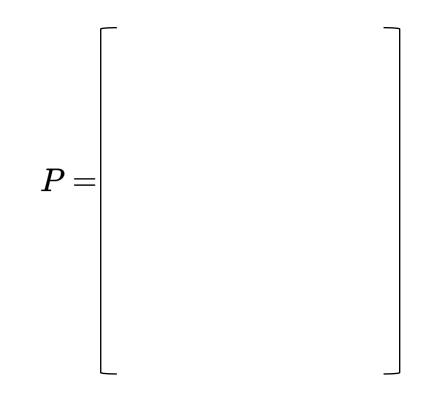
• We use bottom-up search to automatically generate the graph grammar



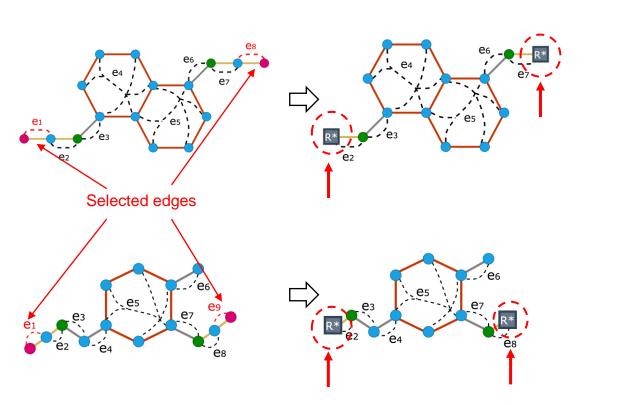
 $N = \{ \boxtimes, \boxtimes \} \qquad \Sigma = \{ \bullet, \bullet, \bullet \}$ Guo et. al, ICLR, 2022

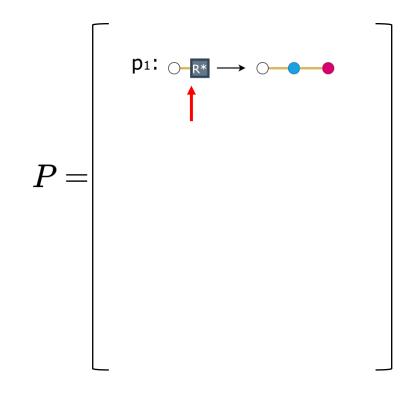
• We use bottom-up search to automatically generate the graph grammar



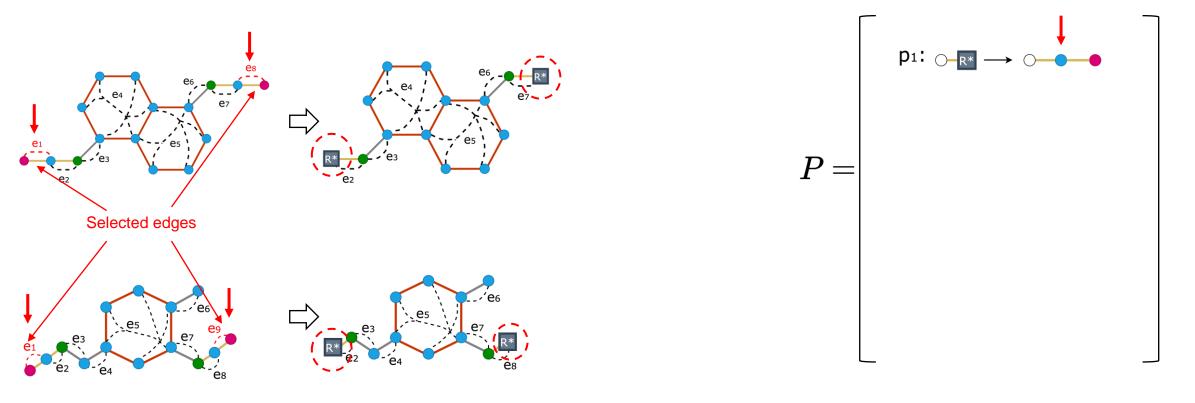


• We use bottom-up search to automatically generate the graph grammar

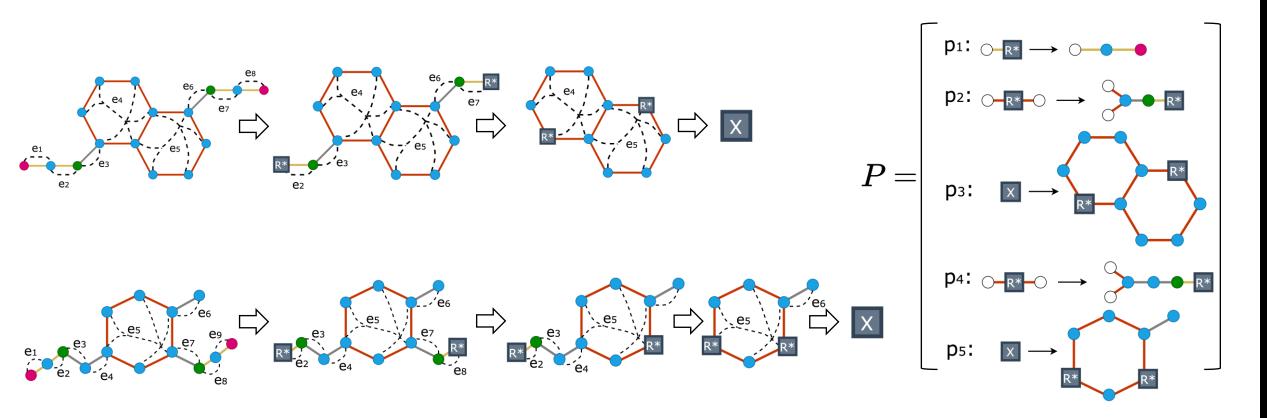




• We use bottom-up search to automatically generate the graph grammar

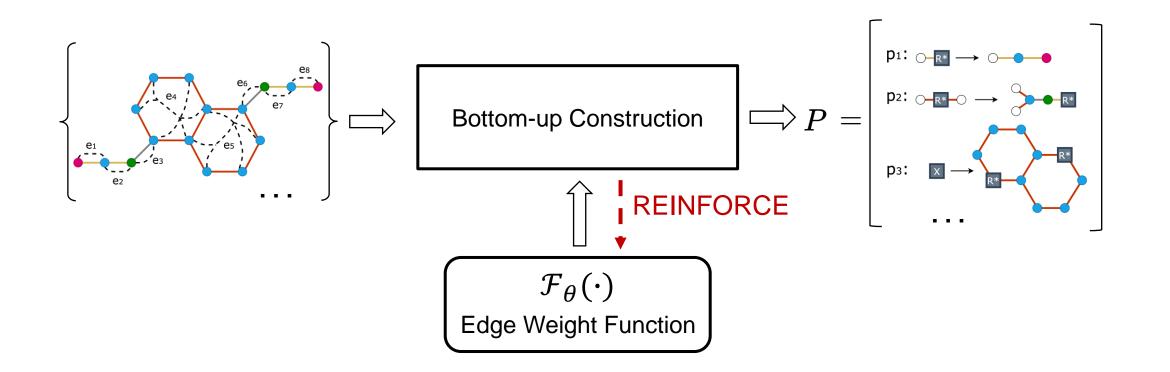


• We use bottom-up search to automatically generate the graph grammar

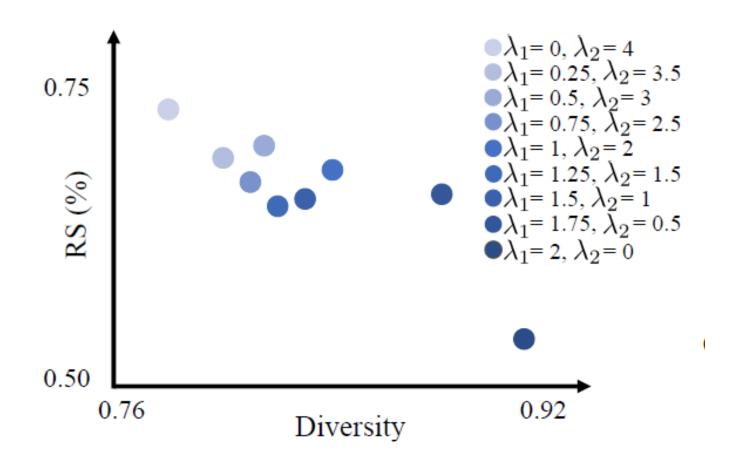


Learning graph grammar as inference

• $\max_{\theta}(diversity(G(\mathcal{F}_{\theta}(e)) + \lambda validity(G(\mathcal{F}_{\theta}(e)))))$



Trade-off between diversity vs. validity



Results on Class-specific Polymer Data

	Method	Valid	Unique	Div.	Chamfer	RS	Memb.
Deep learning-based- methods Grammar-based methods	Train data	100%	100%	0.61	0.00	100%	100%
	GraphNVP	<u>0.16%</u>				0.00%	0.00%
	JT-VAE	100%	5.8%	0.72	0.85	5.50%	66.5%
	HierVAE	100%	<u>99.6%</u>	0.83	0.76	1.85%	0.05%
	MHG	100%	75.9%	0.88	0.83	2.97%	12.1%
	STONED	100%	100%	0.85	<u>0.86</u>	<u>5.63%</u>	<u>79.8%</u>
	DEG	100%	100%	<u>0.86</u>	0.87	27.2%	96.3%

Results on Class-specific Polymer Data

Percentage of molecules belonging to the concerned class

							<u>r, r - + -,</u>		
	Method	Valid	Unique	Div.	Chamfer	RS	Memb.		
_		4000/	4000/	0.04					
Deep learning-based- methods Grammar-based methods	Train data	100%	100%	0.61	0.00	100%	100%		
	GraphNVP	<u>0.16%</u>				0.00%	0.00%		
	JT-VAE	100%	5.8%	0.72	0.85	5.50%	66.5%		
	HierVAE	100%	<u>99.6%</u>	0.83	0.76	1.85%	0.05%		
	MHG	100%	75.9%	0.88	0.83	2.97%	12.1%		
	STONED	100%	100%	0.85	<u>0.86</u>	<u>5.63%</u>	<u>79.8%</u>		
	DEG	100%	100%	<u>0.86</u>	0.87	27.2%	96.3%		

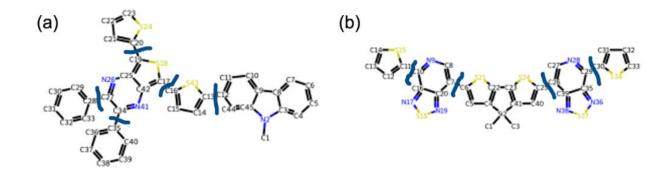
Percentage of **synthesizable** molecules

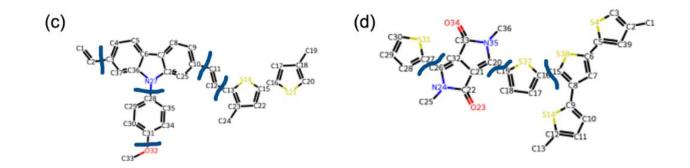
Results on Large Polymer Dataset

		Distribution Statistics (\downarrow)				Sample Quality (↑)			
	Method		SA	QED	MW	Valid	Uniqu e	Div.	Chamfe r
Г	Train data	0.12	0.02	0.002	2.98	100%	100%	0.83	0.00
- Deep learning-based - methods	SMILESVAE	9.63	2.99	0.19	751.6	0.01%			
	GraphNVP	2.94	0.65	0.03	435.6	0.23%			
	JT-VAE	2.93	0.32	0.10	210.1	100%	83.9%	<u>0.88</u>	0.50
Grammar-based [- methods [-	HierVAE	0.50	0.08	0.02	42.45	100%	<u>99.9%</u>	0.82	0.32
	MHG	9.20	1.91	0.10	380.3	100%	100%	0.91	0.56
	STONED	2.43	0.81	0.07	179.9	99.9%	100% -	0.83	0.45
Only trained on 117 samples of original — 81k dataset	DEG (0.15%, fitting)	<u>1.80</u>	0.25	0.02	<u>69.0</u>	100%	100%	0.82	0.60
	DEG	5.52	0.51	0.20	334.2	100%	100%	0.86	<u>0.62</u>

Key Insights

- Symbolic representations
- Automatic checkers/oracles
 - For example, retrosynthesis
- Expert annotations





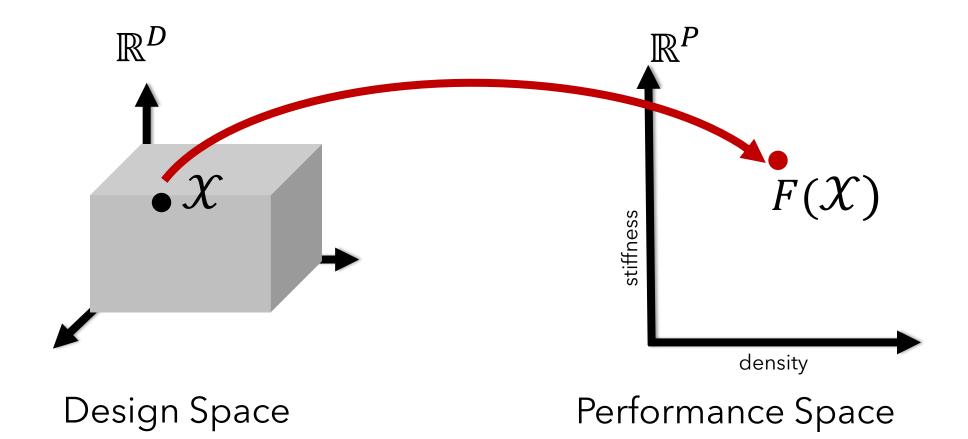
Sun et. al, ICML, 2024

Key Questions for Computational Design

- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

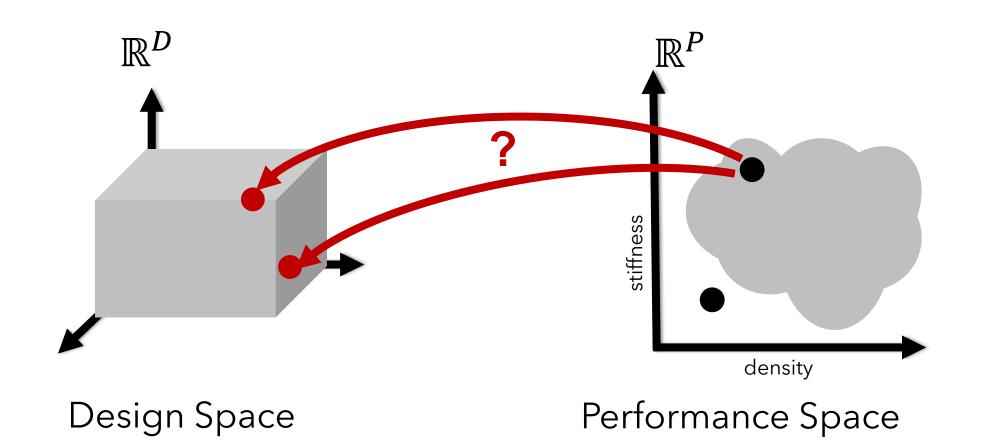
From Design To Performance

• Numerical simulations (or real experiments) map a point in design space to a point in performance space



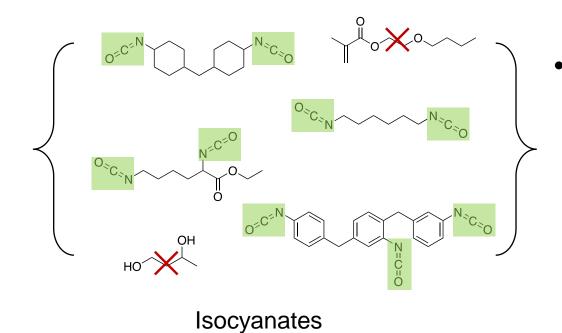
Inverse Design

• Inverse problem is much more difficult



Case 1: Small Experimental Datasets

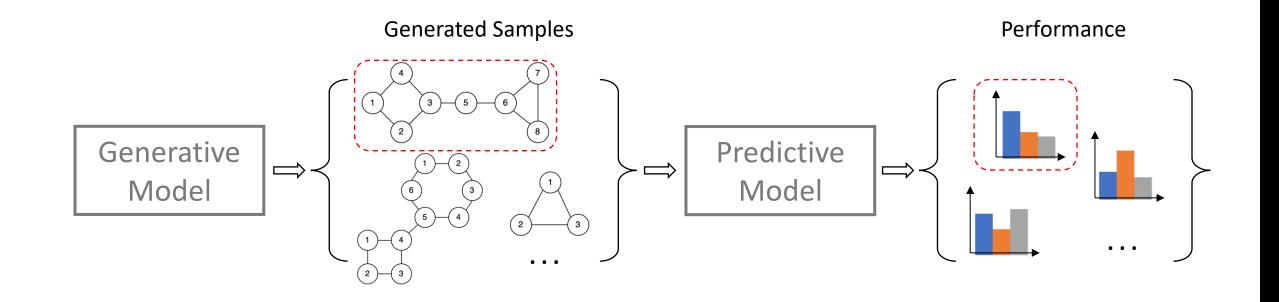
• We would like to find a molecule with desired material properties



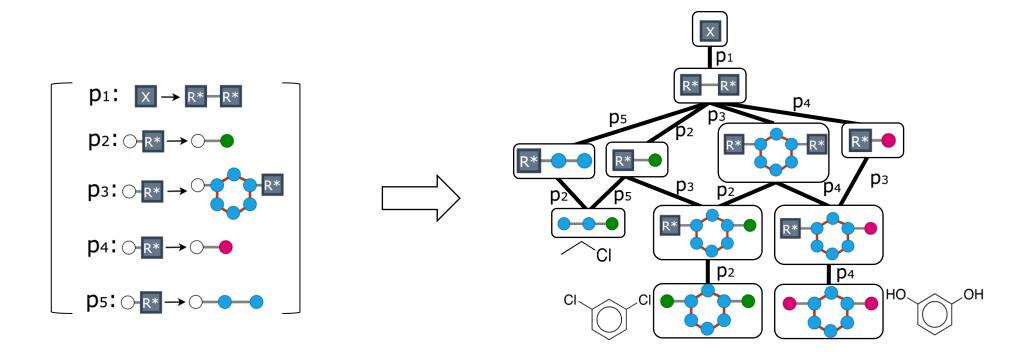
Existing dataset for polyurethanes: Only 20 samples [Menon et al. 2019]

× Train/Finetune DL networks

Finding new molecules & their properties



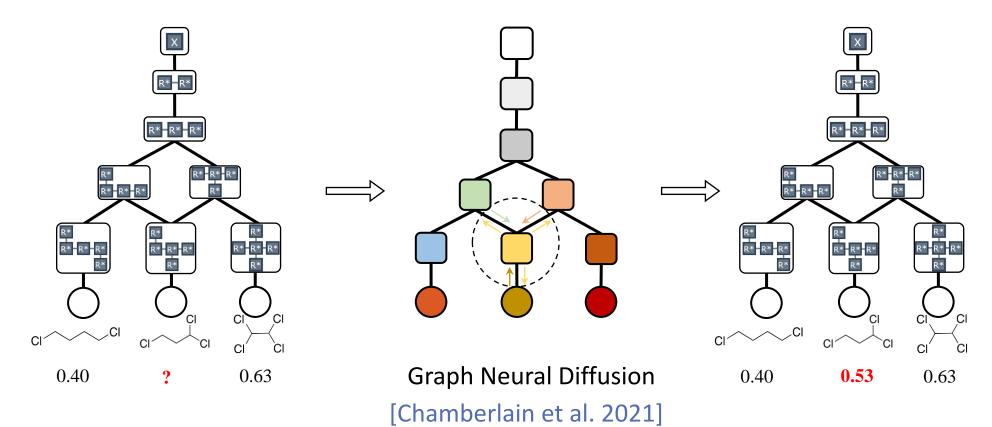
Grammar Induces Manifold Geometry

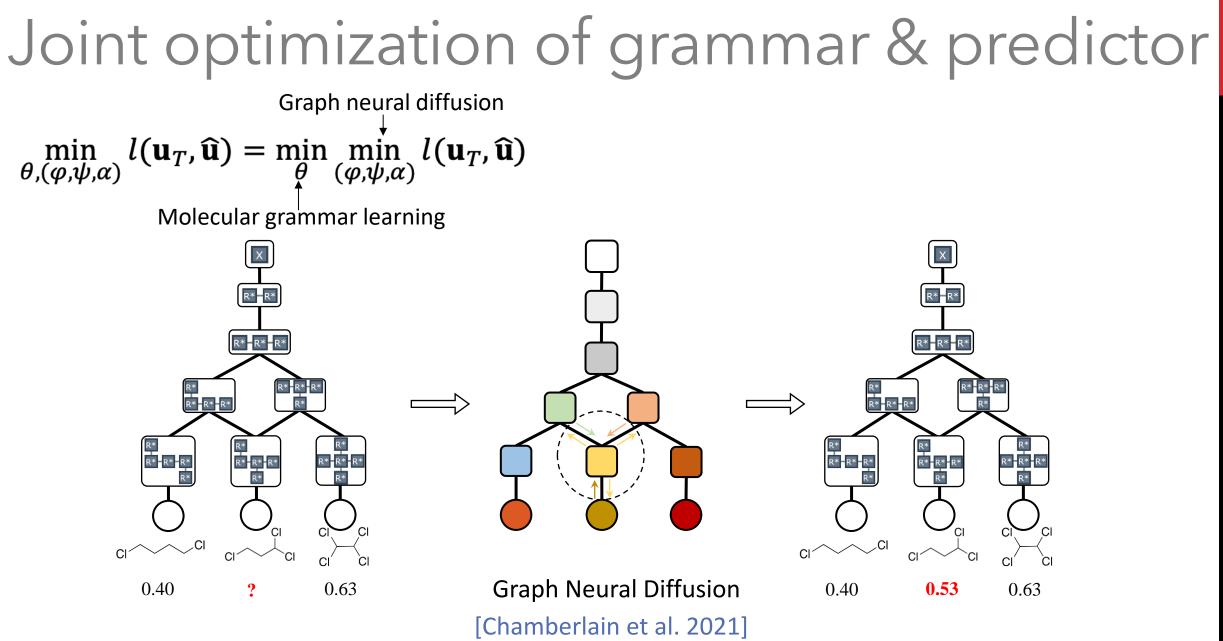


Graph Grammar

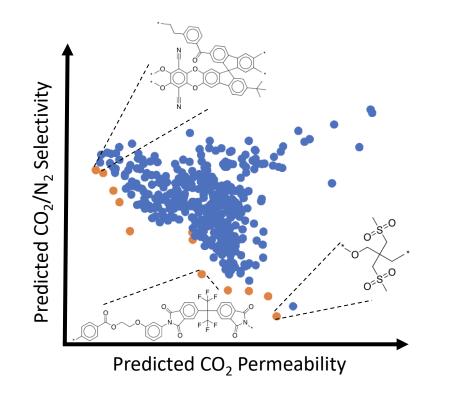
Grammar-induced Geometry

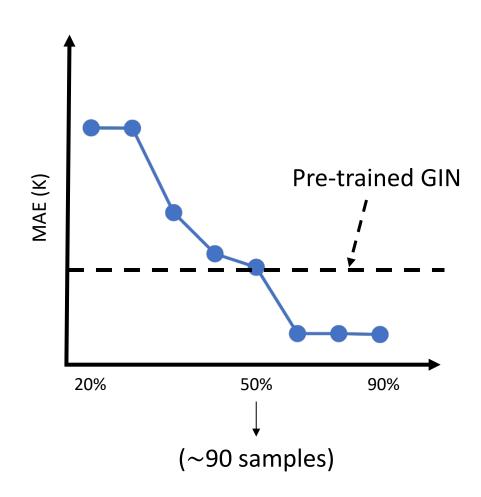
Property Predictor



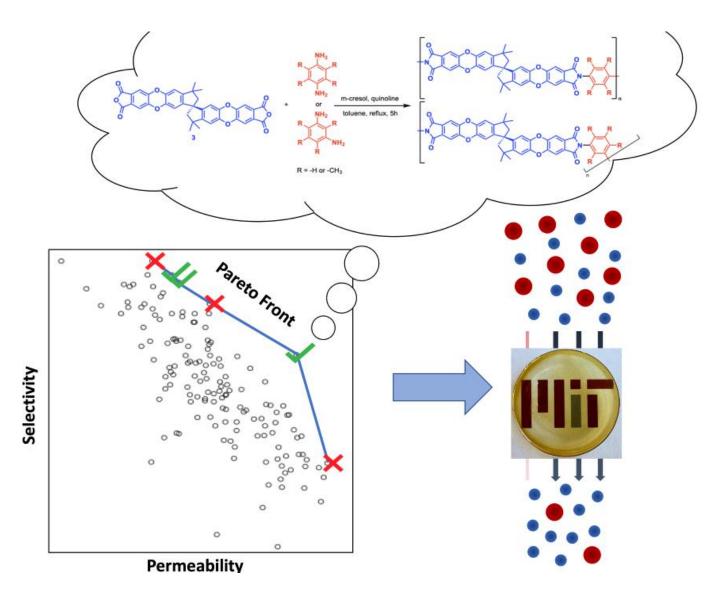


Property Prediction Results



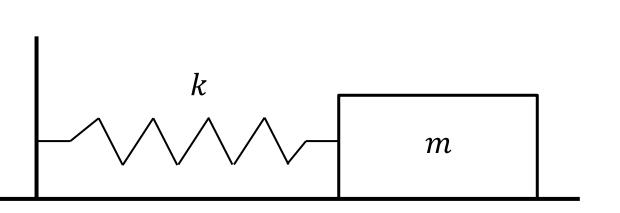


Design of Novel Molecules



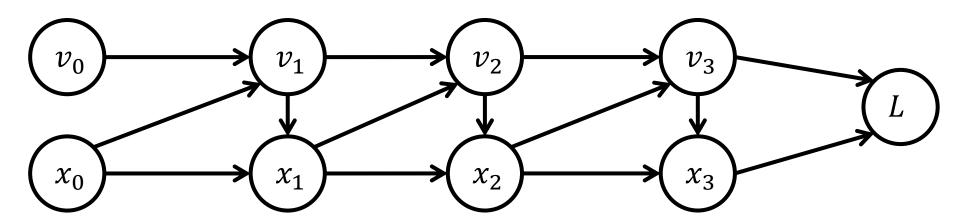
Case 2: Simulation is Possible

Differentiable Simulation Can Help Forward pass

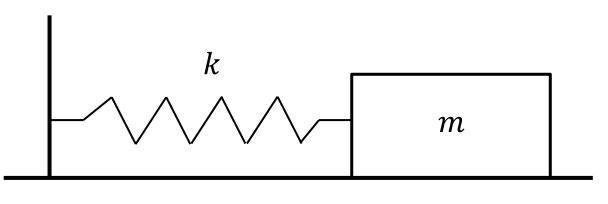


$$v_{i+1} = v_i - hk \frac{x_i}{m}$$
$$x_{i+1} = x_i + hv_{i+1}$$

The computational graph



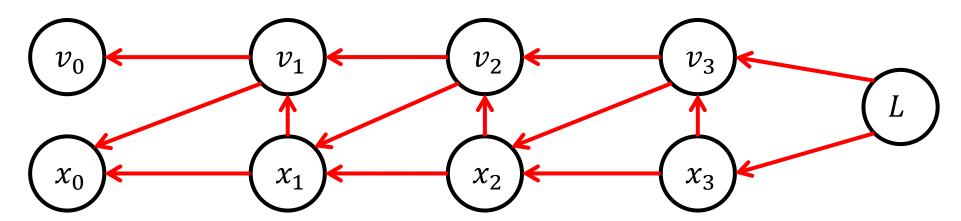
Differentiable Simulation Can Help Backward pass



$$v_{i+1} = v_i - hk \frac{x_i}{m}$$
$$x_{i+1} = x_i + hv_{i+1}$$

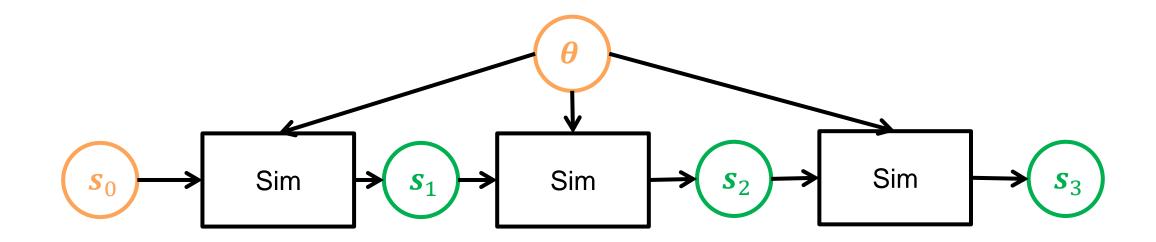
 $\frac{\partial L}{\partial v_{i}} = \frac{\partial L}{\partial v_{i+1}} \qquad \frac{\partial L}{\partial x_{i}} = -hk \frac{\partial L}{\partial v_{i+1}}$ $\frac{\partial L}{\partial x_{i}} = \frac{\partial L}{\partial x_{i+1}} \qquad \frac{\partial L}{\partial v_{i+1}} = h \frac{\partial L}{\partial x_{i+1}}$

Backpropagation

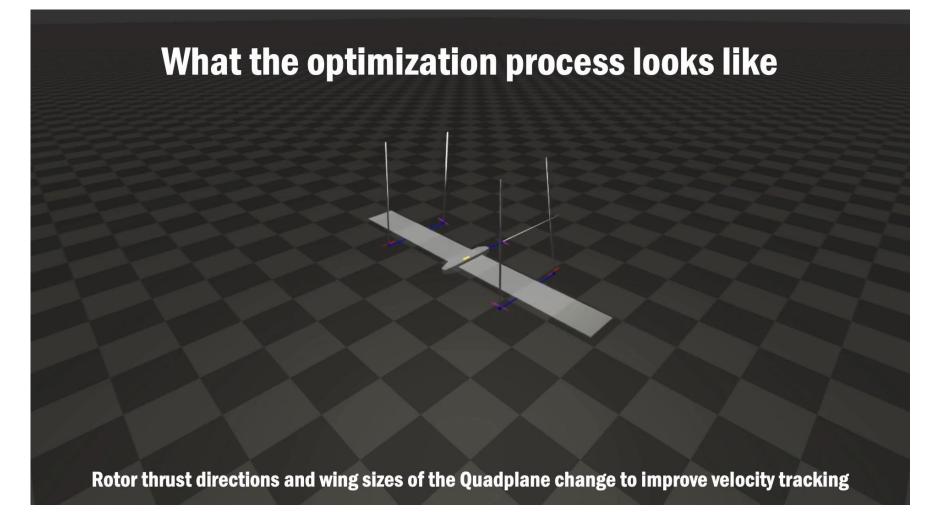


Differentiable Simulation Can Help

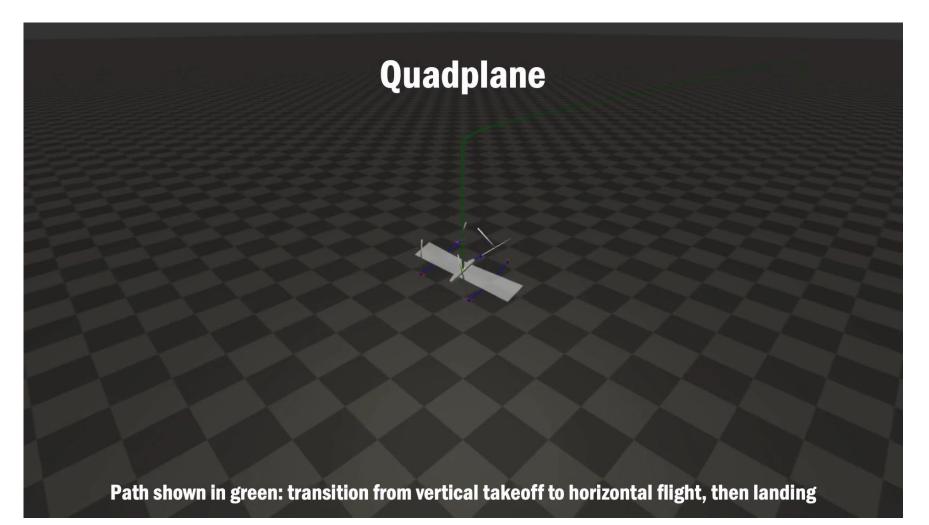
- System identification (optimizing θ)
- Initial condition optimization (optimizing s_0)



Optimization of Hybrid UAVs

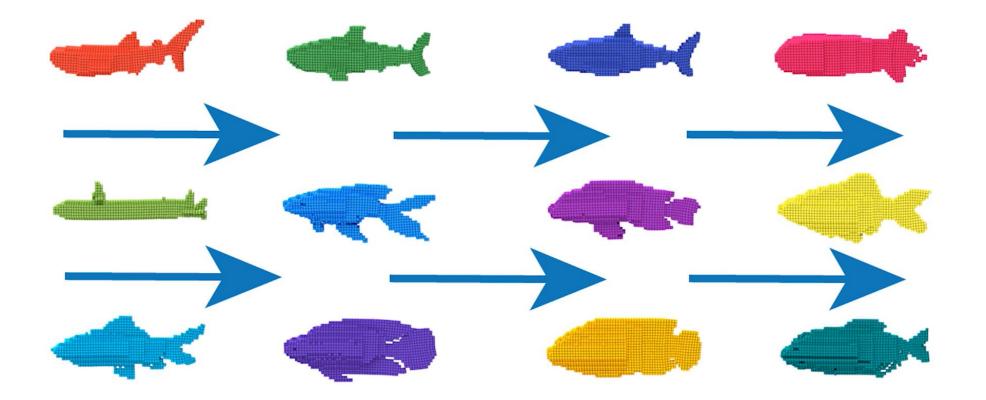


Optimization of Hybrid UAVs



Optimization of Soft Fish

Baselines (control only)



Ma et. al, Siggraph, 2022

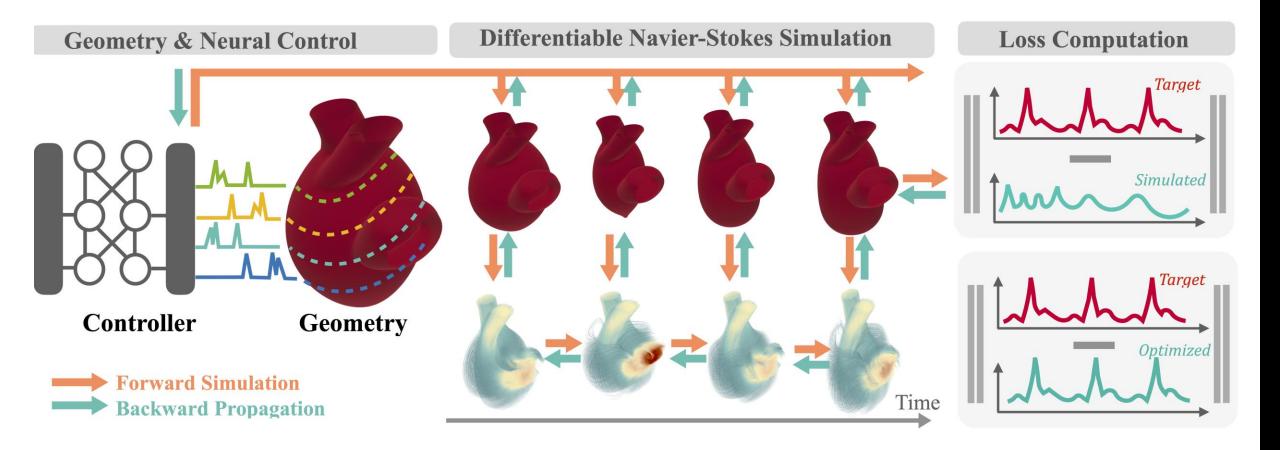
Optimization of Fluidic Systems

Fluid Twister

Goal: Generate a twisting flow in the yz-plane at the outlet of the domain from a circular-shaped constant inlet with inflow velocity $(v_{in}, 0, 0)$

Ma et. al, Siggraph Asia, 2022

Optimization of Fluidic Systems



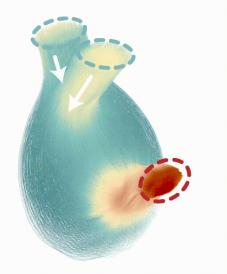
Li et. al, NeurIPS, 2024

Optimization of Fluidic Systems

Neural Heart

Goal: Optimize a closed-loop controller parameterized by a two-layer MLP to control the muscle excitation signal at four cross-sections of an aritificial heart to match a target outlet flow profile

Domain: 48x48x48



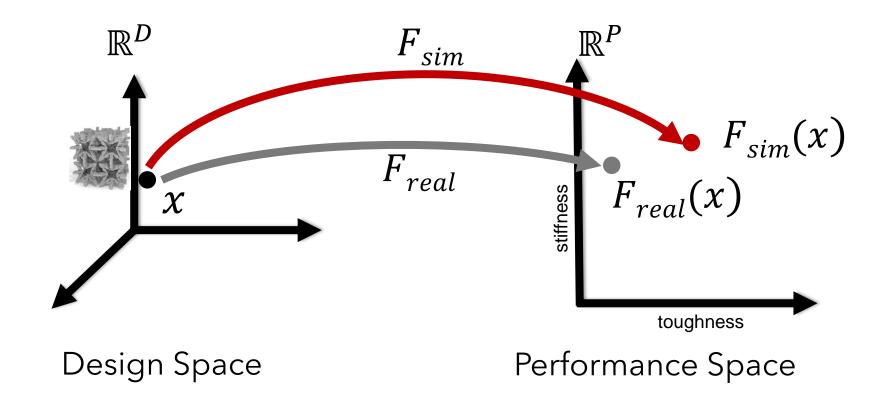
Li et. al, NeurIPS, 2024

Key Questions for Computational Design

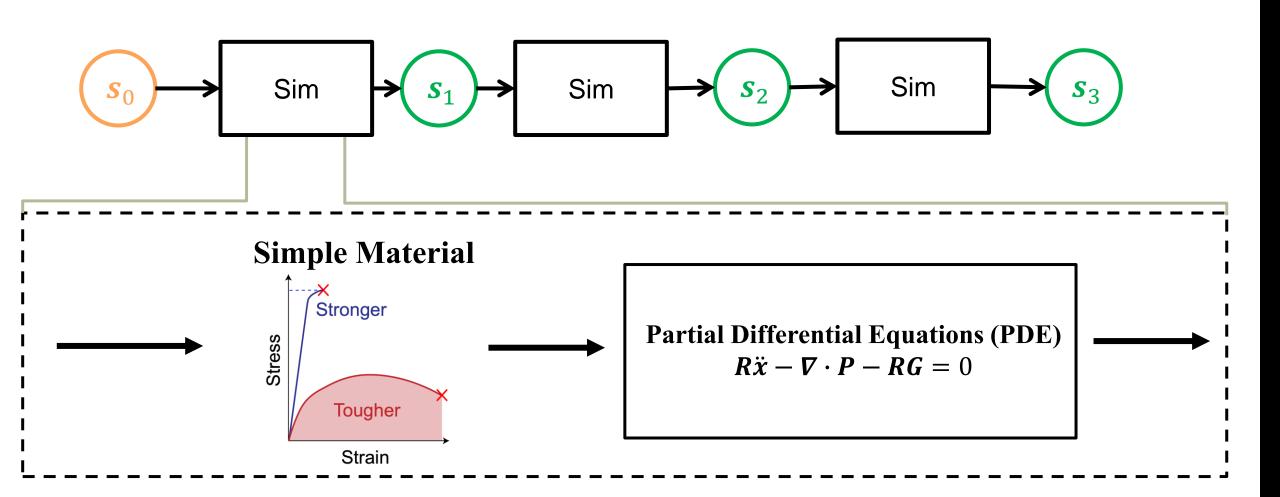
- 1. How to represent a design?
- 2. How to represent a design space?
- 3. How to learn a design space?
- 4. How to find designs with optimal performance?
- 5. How to bridge the gap between digital & real?

Simulation is Often Unreliable

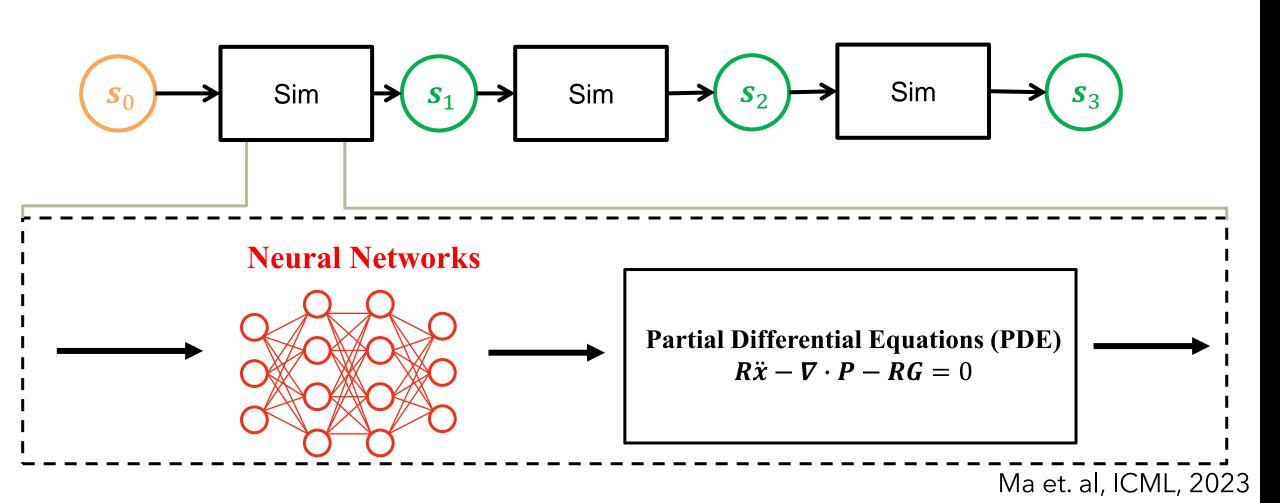
• Simulation does not match real experiments



Classical Physics-based Simulation

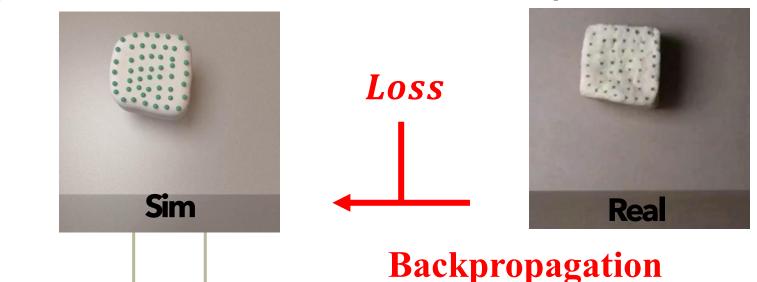


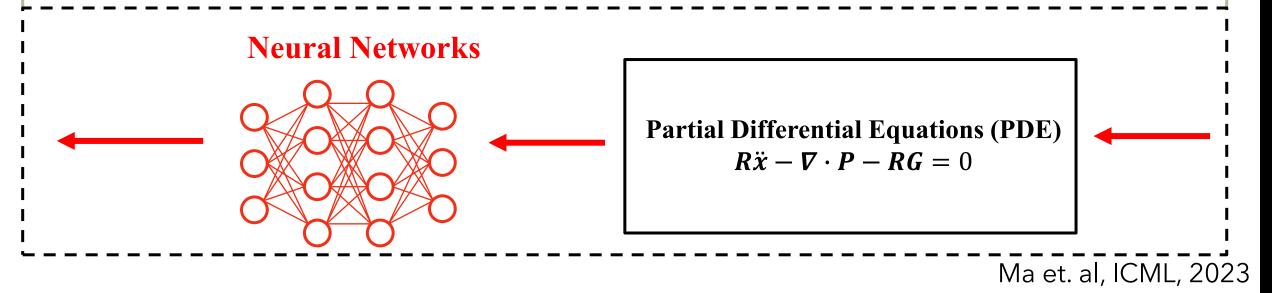
A Hybrid Neural-PDE Approach



Closing the Sim-to-real Gap

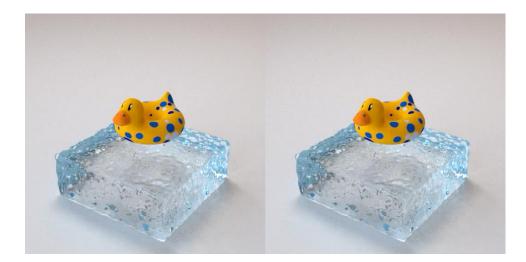
Fits the realworld data better than classic models





A Hybrid Neural-PDE Approach

Ground truth Simulation



Ground truth

Simulation

Data efficiency: one-shot generalization over **geometries**, boundary conditions, temporal range, and **multi-physics.**

Ma et. al, ICML, 2023

Comparison to Data Driven Methods

Training data Ground truth Ours GNS

Generalization: **over 100X times more accurate** than <u>end-</u> <u>to-end ML approaches that do not keep the PDEs</u>, e.g., graph neural network (GNN) simulation

Ma et. al, ICML, 2023

Example: tough & strong composites

Strength: the ability to recover from an applied load. Toughness: the ability to resist cracks.

Engineering applications require materials to be simultaneously strong and tough.

sets Stronger Tougher

Strength and Toughness are often <u>mutually exclusive</u>. Because to be tough, a material has to be ductile enough to tolerate long cracks and absorb more energy during fracture.

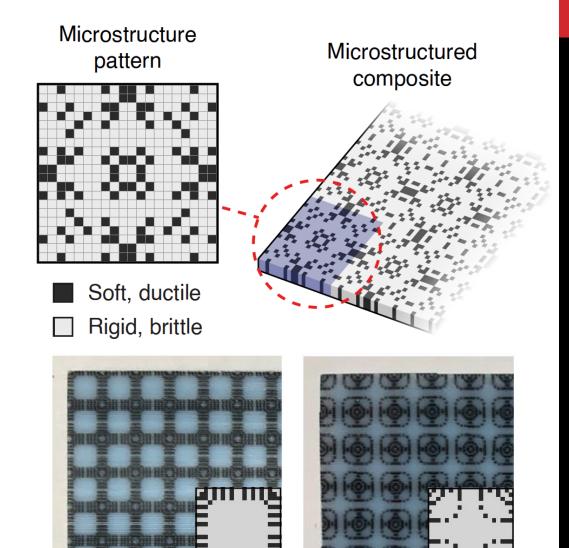
Strain

How to design materials that are simultaneously strong and tough?

Example: tough & strong composites

A full picture: Pareto Front

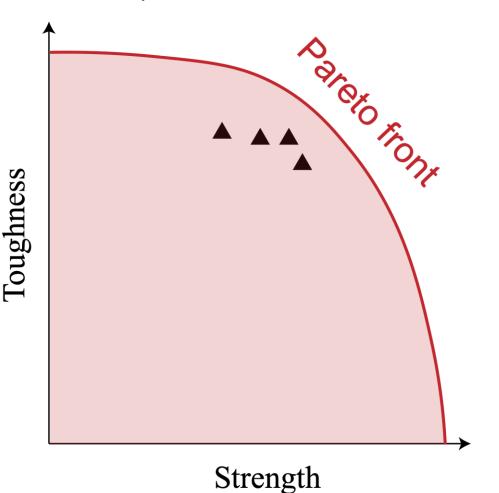


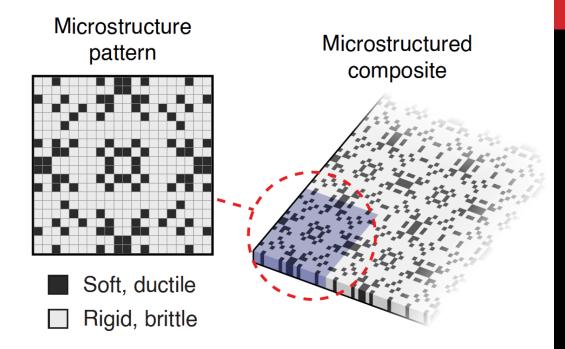


3D printed by OBJET

Example: tough & strong composites

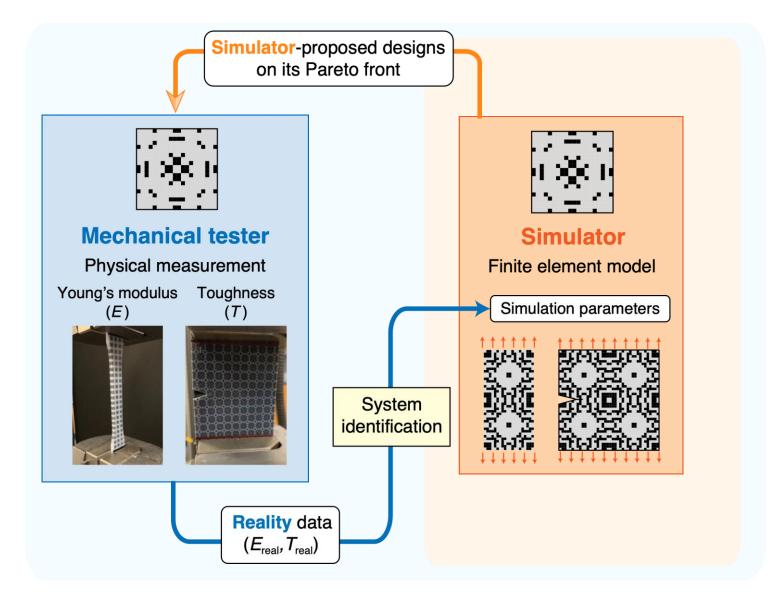
A full picture: Pareto Front

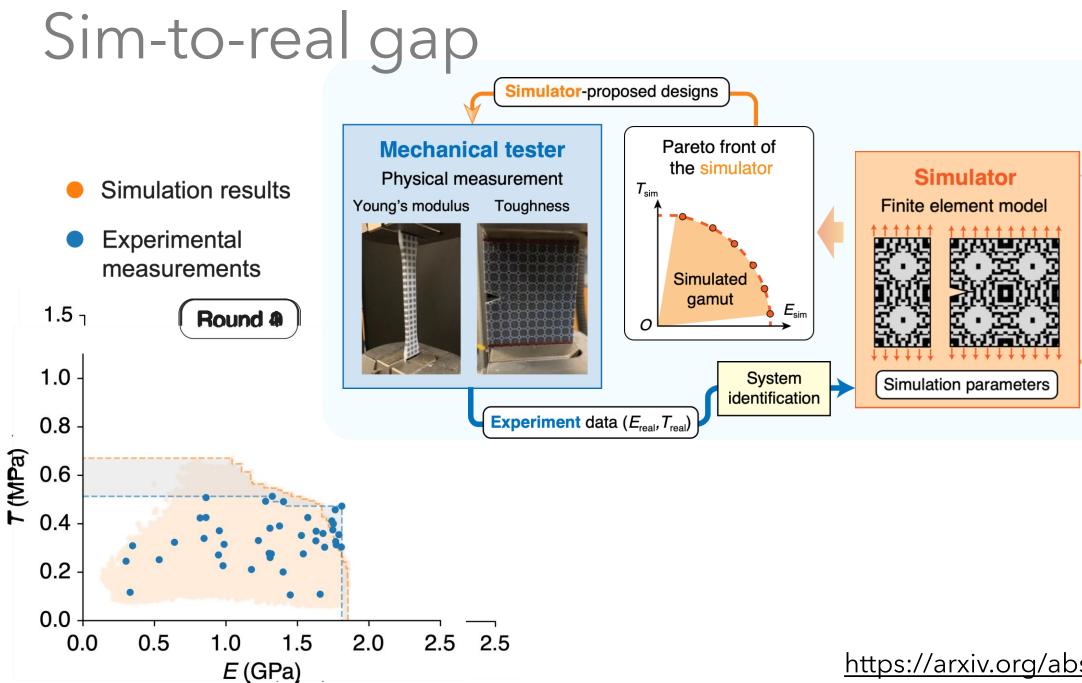




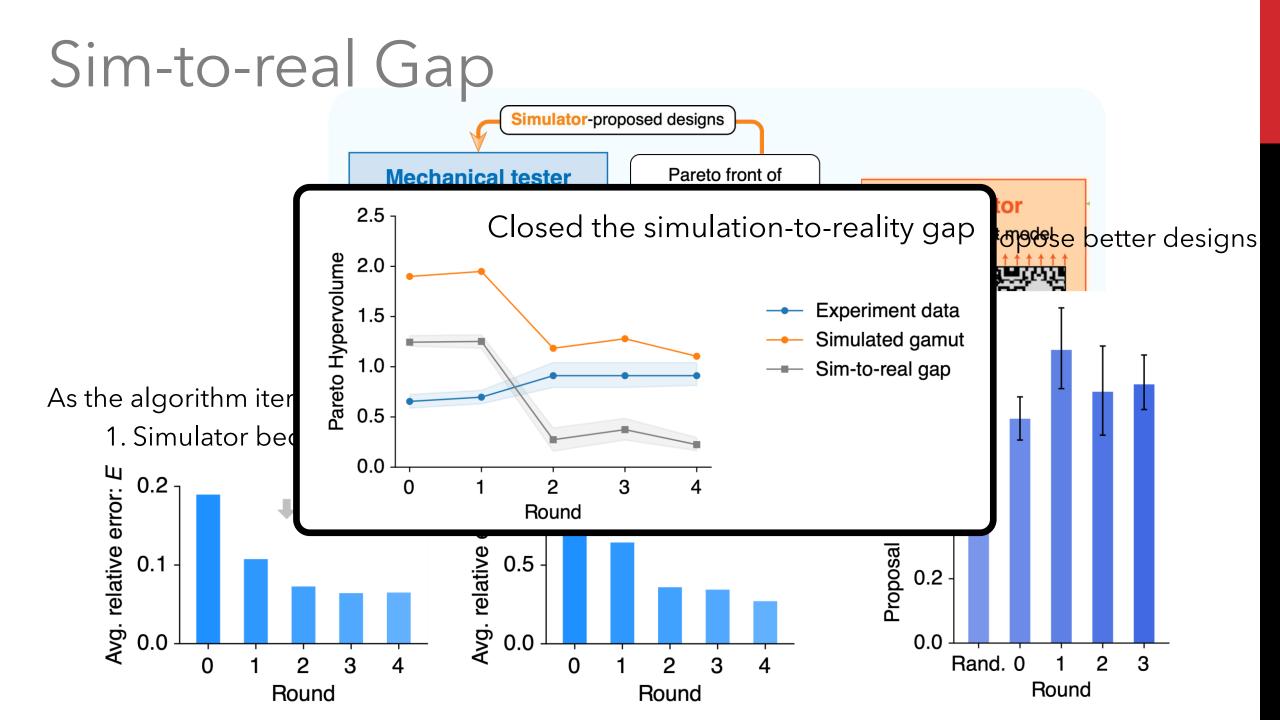
Challenge: simulation-to-reality gap. **Reason**: highly nonlinear fracture dynamics.

A competitive game



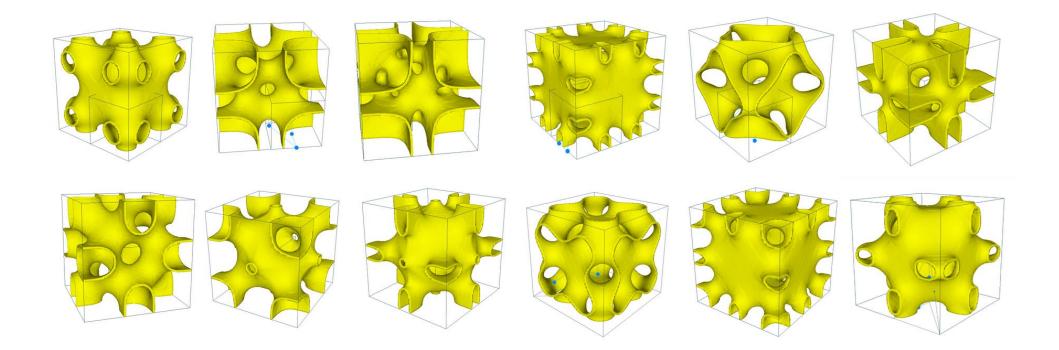


https://arxiv.org/abs/2302.01078



Can computers beat humans at design?

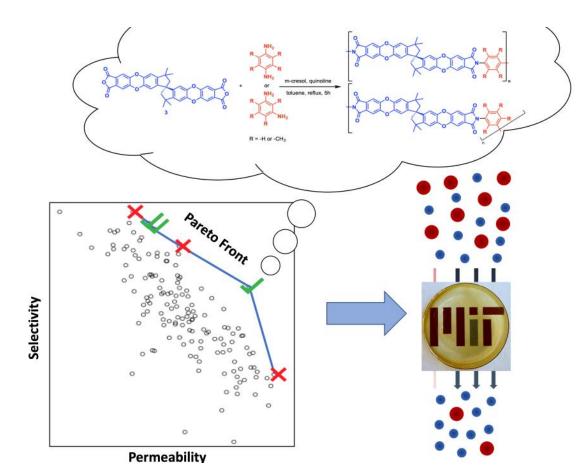
Representations are Key



Hundreds of new TPMS structures

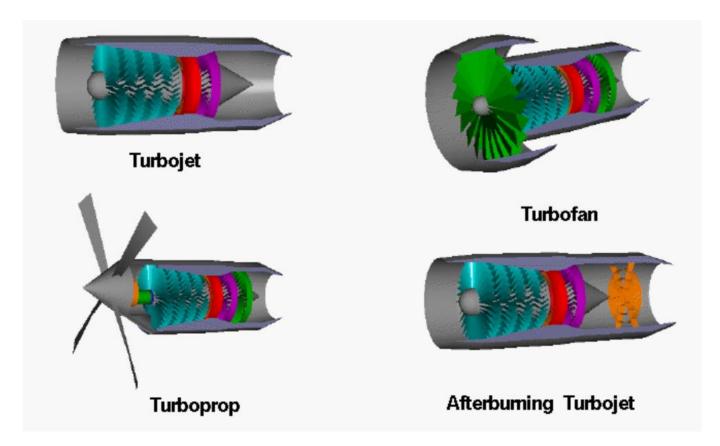
Design of Novel Molecules

• We can find new designs with optimal performance trade-offs



Design of Novel Molecules

- We can find new designs with optimal performance trade-offs
- The grand challenge is extrapolation beyond current data.



Will computers and humans produce better designs?

Lessons Learned

- Representations are key
- Scientists need workflows for small experimental datasets
- New workflows will learn/create specialized design spaces
- Workflows need to incorporate knowledge from experts & check validity
- Workflows will couple generative and predictive models to find optimal design
- Predictive models will combine neural/classical models
- We will be able to find new designs with optimal performance trade-offs
- But the real grand challenge is extrapolation beyond current data.

Acknowledgements

Allan Zhao, MIT Beichen Li, MIT Liane Makatura, MIT Liang Shi, MIT Timothy Erps, MIT Michael Foshey, MIT Minghao Guo, MIT Pingchuan Ma, MIT Yifei Li, MIT Sebastien Wah, MIT John Zhang, MIT Bolei Deng, MIT Bohan Wang, MIT

Daniela Rus, MIT Wei Wang, MIT Josie Hughes, EPFL Juan Salazar, MIT Mina Konakovic Lukovic, MIT Sangeeta Srinivasan, Wisconsin Eftychios Sifakis, Wisconsin Robert Katzschman, ETH Yu Zhang , ETH Elvis Nava, ETH Philip Arm, ETH Mike Yan Michelis, ETH Benjamin F. Grewe, ETH

Jie Chen, IBM Payel Das, IBM Veronika Thost, IBM Wan Shou, U. Arkansas Jie Xu, NVIDIA Andy Spielberg, Harvard Bo Zhu, Dartmouth Kui Wu, Tencent Tao Du, Tsinghua Tae Hyun Oh, Postech Bernd Bickel, IST Chris Wojtan, IST Yi-Lu Chen, IST

Email: wojciech@mit.edu