

Process Chain Optimization and Quality Assurance for the Additive Manufacturing of Aero Engine Parts

Dr. K. Dusel, 16.3.2016

Agenda

- **1. THE COMPANY**
- 2. ADDITIVE MANUFACTURING @MTU
- **3. AM PROCESS CHAIN**
- **4. QUALITY ASSURANCE**
- **5. FUTURE CHALLENGES**

1. THE COMPANY

MTU Aero Engines' business model

COMMERCIAL ENGINE BUSINESS

Share in sales: ~ 53%

- Balanced portfolio of products in all thrust categories
- Partnerships with OEMs going back decades

MILITARY ENGINE BUSINESS

Share in sales: ~ 14%

- European and U.S. engine programs
- Lead industrial partner to the German Armed Forces

COMMERCIAL MAINTENANCE

Share in sales: ~ 33%

- Access to high-growth segments
- Provider of services to airlines worldwide

MTU Maintenance MTU Aero Engines Lease Services Hauptsitz München **MTU Maintenance** Aerospace Embedded Hannover **MTU Aero Engines** Solutions Polska **MTU Maintenance** Canada **MTU Maintenance Zhuhai** Ceramic 50 % MTU; 50 % China Southern **Coating Center MTU Maintenance** Dallas **MTU AENA** Airfoil Services (ASSB) Vericor Power 50 % MTU; 50 % LHT Systems **OEM-Geschäft MTU Maintenance** Berlin-Brandenburg **Triebwerks-MRO Teilereparatur Pratt & Whitney Canada Customer Service Centre Europe**

Major company locations worldwide

Global MTU Aero Engines workforce

MTU Aero Engines has a total workforce of around **9,000** employees worldwide -

4,000 of which are employed by MTU Maintenance.

Around **7,300** people are working at our locations in Germany:

4,700 in Munich
1,900 in Hannover
700 in Berlin-Brandenburg.

MTU Aero Engines' workforce is made up of **48** different nations.

Revenues in million €

Commercial engine business
 Military engine business
 Commercial maintenance

Development / Production

Maintenance

2. ADDITIVE MANUFACTURING @MTU

Additive Manufacturing @ MTU History

Continuous expansion of manufacturing expertise and range of applications

Additive Manufacturing @ MTU

Available AM technologies for IN718

Additive Manufacturing @ MTU

Additive Manufacturing Facilities

Rapid Prototyping @ MTU

- 1 Z-Printer Z650
- 1 RepRap X400

Additive Manufacturing @ MTU

- 6 EOSINT M280 production machines
- 1 EOS M290 technology machine

Materials

- IN718
- MAR-M509
- Stainless Steel 316L
- (Ti6Al4V)

► Necessity of identical quality, identical material data, higher affordability for all machines

- Increase of build-rate without change of material data
- ► Machine improvements at constant quality

Additive Manufacturing @ MTU

Roadmap: Phases of Implementation

Phase 3: New AM Design

Manufacturing of functional structures to reduce weight and cost (bionic design)

Phase 2: Substitution

Cost effective manufacturing of raw parts Substitution of castings

Phase 1: Tooling, Rig and Development

Manufacturing of tooling, Rig- and development hardware

Additive Manufacturing @ MTU Roadmap: First AM-Production Parts

- Two part numbers per engine
- All development engines provided with AM parts
- Start of production in 2013
- Production ramp-up in 2016

Serial production of Boroscope bosses for the A320NEO has started

3. AM PROCESS CHAIN

AM Process Chain

Potential for improvements in the process chain

Potentials & required improvements

- Complete process chain has to be optimized
- Big potential in optimizing downstream processes

4. QUALITY ASSURANCE

Quality Assurance QA Concept

Pre-Process QA Total Productive Maintenance

Total Productive Maintenance
 established at all Machines

Quality Assurance Rare defects

Cannot be detected with conventional NDT

0,1 mm Lack of fusion

- Inside the part → No FPI
- Complex 3D-geometries \rightarrow No US
- Flat \rightarrow No X-Ray

- Online Process Monitoring needed
- Inspection of every single layer

Optical Tomography

Long time exposure of urban traffic

 \rightarrow traffic volume

Brightness in the picture equals radiance x time

→ Measurement for energy input / distance energy

Long time exposure in additive manufacturing

 \rightarrow amount of heat

Optical Tomography

Correlation between OT-surveillance picture and the process discrepancy

Complete monitoring of every single layer

OT has been successfully introduced for the first serial parts

Optical Tomography

Lacks of fusion caused by process disturbance

Optical Tomography

In-Process QA Monitoring of the Recoating Process

Platform position during Recoating:

 \rightarrow Ensure powder thickness

Platform position during Positioning:→Ensure free of collision recoating

QA (Part) FPI

- Porosity
- Cracks (surface)

Test part with background fluorescence (early development phase)

Background fluorescence has been reduced for FPI

5. FUTURE CHALLENGES

Challenges and Expectations

Internal challenges

- Further development of quality assurance
- Extend AM part portfolio
- Establish design rules and layout of light weight construction
- Integrated AM-production facility

Expectations towards market

- Comparability between machines
- Increase of quality and productivity
- Further development of the complete process chain
- Exchange of knowledge about critical defects
- Common material and process parameter data base

THANK YOU VERY MUCH FOR YOUR ATTENTION

